/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Data.Complex.Exponential import Mathlib.Geometry.Manifold.Instances.Real import Mathlib.LinearAlgebra.Matrix.ToLin /-! # Representations appearing in the Standard Model This file defines the basic representations which appear in the Standard Model. -/ universe v u namespace StandardModel open Manifold open Matrix open Complex open ComplexConjugate /-- The 2d representation of U(1) with charge 3 as a map from U(1) to `unitaryGroup (Fin 2) ℂ`. -/ @[simps!] noncomputable def repU1Map (g : unitary ℂ) : unitaryGroup (Fin 2) ℂ := ⟨g ^ 3 • 1, by rw [mem_unitaryGroup_iff, smul_one_mul, show g = ⟨g.1, g.prop⟩ from rfl] simp only [SubmonoidClass.mk_pow, Submonoid.mk_smul, star_smul, star_pow, RCLike.star_def, star_one] rw [smul_smul, ← mul_pow] erw [(unitary.mem_iff.mp g.prop).2] simp only [one_pow, one_smul]⟩ /-- The 2d representation of U(1) with charge 3 as a homomorphism from U(1) to `unitaryGroup (Fin 2) ℂ`. -/ @[simps!] noncomputable def repU1 : unitary ℂ →* unitaryGroup (Fin 2) ℂ where toFun g := repU1Map g map_mul' g h := by simp only [repU1Map, Submonoid.mk_mul_mk, mul_smul_one, smul_smul, mul_comm, ← mul_pow] map_one' := by simp only [repU1Map, one_pow, one_smul, Submonoid.mk_eq_one] /-- The fundamental representation of SU(2) as a homomorphism to `unitaryGroup (Fin 2) ℂ`. -/ @[simps!] def fundamentalSU2 : specialUnitaryGroup (Fin 2) ℂ →* unitaryGroup (Fin 2) ℂ where toFun g := ⟨g.1, g.prop.1⟩ map_mul' _ _ := Subtype.ext rfl map_one' := Subtype.ext rfl lemma repU1_fundamentalSU2_commute (u1 : unitary ℂ) (g : specialUnitaryGroup (Fin 2) ℂ) : repU1 u1 * fundamentalSU2 g = fundamentalSU2 g * repU1 u1 := by apply Subtype.ext simp end StandardModel