/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Mathematics.PiTensorProduct import Mathlib.RepresentationTheory.Rep import HepLean.Tensors.Basic import Mathlib.Logic.Equiv.TransferInstance import HepLean.SpaceTime.LorentzGroup.Basic import HepLean.SpaceTime.PauliMatrices.Basic /-! ## Interaction of Pauli matrices with self-adjoint matrices -/ namespace PauliMatrix open Matrix lemma selfAdjoint_trace_σ0_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : (Matrix.trace (σ0 * A.1)).re = Matrix.trace (σ0 * A.1) := by rw [eta_fin_two A.1] simp only [σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add] have hA : IsSelfAdjoint A.1 := A.2 rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA rw [eta_fin_two (A.1)ᴴ] at hA simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const] at hA have h00 := congrArg (fun f => f 0 0) hA simp only [Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one] at h00 have hA00 : A.1 0 0 = (A.1 0 0).re := by exact Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00) rw [hA00] simp only [Fin.isValue, Complex.ofReal_re, add_right_inj] have h11 := congrArg (fun f => f 1 1) hA simp only [Fin.isValue, of_apply, cons_val', cons_val_one, head_cons, empty_val', cons_val_fin_one, head_fin_const] at h11 exact Complex.conj_eq_iff_re.mp h11 lemma selfAdjoint_trace_σ1_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : (Matrix.trace (σ1 * A.1)).re = Matrix.trace (σ1 * A.1) := by rw [eta_fin_two A.1] simp only [σ1, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add] have hA : IsSelfAdjoint A.1 := A.2 rw [isSelfAdjoint_iff, star_eq_conjTranspose] at hA rw [eta_fin_two (A.1)ᴴ] at hA simp at hA have h01 := congrArg (fun f => f 0 1) hA simp at h01 rw [← h01] simp only [Fin.isValue, Complex.conj_re] rw [Complex.add_conj] simp only [Fin.isValue, Complex.ofReal_mul, Complex.ofReal_ofNat] ring lemma selfAdjoint_trace_σ2_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : (Matrix.trace (σ2 * A.1)).re = Matrix.trace (σ2 * A.1) := by rw [eta_fin_two A.1] simp only [σ2, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add] have hA : IsSelfAdjoint A.1 := A.2 rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA simp only [Fin.isValue, conjTranspose_apply, RCLike.star_def] at hA have h10 := congrArg (fun f => f 1 0) hA simp only [Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_fin_const] at h10 rw [← h10] simp only [Fin.isValue, neg_smul, smul_cons, smul_eq_mul, smul_empty, neg_cons, neg_empty, trace_fin_two_of, Complex.add_re, Complex.neg_re, Complex.mul_re, Complex.I_re, Complex.conj_re, zero_mul, Complex.I_im, Complex.conj_im, mul_neg, one_mul, sub_neg_eq_add, zero_add, zero_sub, Complex.ofReal_add, Complex.ofReal_neg] trans Complex.I * (A.1 0 1 - (starRingEnd ℂ) (A.1 0 1)) · rw [Complex.sub_conj] ring_nf simp · ring lemma selfAdjoint_trace_σ3_real (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : (Matrix.trace (σ3 * A.1)).re = Matrix.trace (σ3 * A.1) := by rw [eta_fin_two A.1] simp only [σ3, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of, Complex.add_re, Complex.ofReal_add] have hA : IsSelfAdjoint A.1 := A.2 rw [isSelfAdjoint_iff, star_eq_conjTranspose, eta_fin_two (A.1)ᴴ] at hA simp at hA have h00 := congrArg (fun f => f 0 0) hA have h11 := congrArg (fun f => f 1 1) hA have hA00 : A.1 0 0 = (A.1 0 0).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h00) have hA11 : A.1 1 1 = (A.1 1 1).re := Eq.symm ((fun {z} => Complex.conj_eq_iff_re.mp) h11) simp only [Fin.isValue, neg_smul, one_smul, neg_cons, neg_empty, trace_fin_two_of, Complex.add_re, Complex.neg_re, Complex.ofReal_add, Complex.ofReal_neg] rw [hA00, hA11] simp open Complex lemma selfAdjoint_ext_complex {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)} (h0 : ((Matrix.trace (PauliMatrix.σ0 * A.1)) = (Matrix.trace (PauliMatrix.σ0 * B.1)))) (h1 : Matrix.trace (PauliMatrix.σ1 * A.1) = Matrix.trace (PauliMatrix.σ1 * B.1)) (h2 : Matrix.trace (PauliMatrix.σ2 * A.1) = Matrix.trace (PauliMatrix.σ2 * B.1)) (h3 : Matrix.trace (PauliMatrix.σ3 * A.1) = Matrix.trace (PauliMatrix.σ3 * B.1)) : A = B := by ext i j rw [eta_fin_two A.1, eta_fin_two B.1] at h0 h1 h2 h3 simp only [PauliMatrix.σ0, Fin.isValue, cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, head_cons, one_smul, tail_cons, zero_smul, empty_vecMul, add_zero, zero_add, empty_mul, Equiv.symm_apply_apply, trace_fin_two_of] at h0 simp [PauliMatrix.σ1] at h1 simp [PauliMatrix.σ2] at h2 simp [PauliMatrix.σ3] at h3 match i, j with | 0, 0 => linear_combination (norm := ring_nf) (h0 + h3) / 2 | 0, 1 => linear_combination (norm := ring_nf) (h1 - I * h2) / 2 simp | 1, 0 => linear_combination (norm := ring_nf) (h1 + I * h2) / 2 simp | 1, 1 => linear_combination (norm := ring_nf) (h0 - h3) / 2 lemma selfAdjoint_ext {A B : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)} (h0 : ((Matrix.trace (PauliMatrix.σ0 * A.1))).re = ((Matrix.trace (PauliMatrix.σ0 * B.1))).re) (h1 : ((Matrix.trace (PauliMatrix.σ1 * A.1))).re = ((Matrix.trace (PauliMatrix.σ1 * B.1))).re) (h2 : ((Matrix.trace (PauliMatrix.σ2 * A.1))).re = ((Matrix.trace (PauliMatrix.σ2 * B.1))).re) (h3 : ((Matrix.trace (PauliMatrix.σ3 * A.1))).re = ((Matrix.trace (PauliMatrix.σ3 * B.1))).re) : A = B := by have h0' := congrArg ofReal h0 have h1' := congrArg ofReal h1 have h2' := congrArg ofReal h2 have h3' := congrArg ofReal h3 rw [ofReal_eq_coe, ofReal_eq_coe] at h0' h1' h2' h3' rw [selfAdjoint_trace_σ0_real A, selfAdjoint_trace_σ0_real B] at h0' rw [selfAdjoint_trace_σ1_real A, selfAdjoint_trace_σ1_real B] at h1' rw [selfAdjoint_trace_σ2_real A, selfAdjoint_trace_σ2_real B] at h2' rw [selfAdjoint_trace_σ3_real A, selfAdjoint_trace_σ3_real B] at h3' exact selfAdjoint_ext_complex h0' h1' h2' h3' noncomputable section /-- An auxillary function which on `i : Fin 1 ⊕ Fin 3` returns the corresponding Pauli-matrix as a self-adjoint matrix. -/ def σSA' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) := match i with | Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩ | Sum.inr 0 => ⟨σ1, σ1_selfAdjoint⟩ | Sum.inr 1 => ⟨σ2, σ2_selfAdjoint⟩ | Sum.inr 2 => ⟨σ3, σ3_selfAdjoint⟩ lemma σSA_linearly_independent : LinearIndependent ℝ σSA' := by apply Fintype.linearIndependent_iff.mpr intro g hg simp at hg rw [Fin.sum_univ_three] at hg simp [σSA'] at hg intro i match i with | Sum.inl 0 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg | Sum.inr 0 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg | Sum.inr 1 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg | Sum.inr 2 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg lemma σSA_span : ⊤ ≤ Submodule.span ℝ (Set.range σSA') := by refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_ intro A let c : Fin 1 ⊕ Fin 3 → ℝ := fun i => match i with | Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re | Sum.inr 0 => 1/2 * (Matrix.trace (σ1 * A.1)).re | Sum.inr 1 => 1/2 * (Matrix.trace (σ2 * A.1)).re | Sum.inr 2 => 1/2 * (Matrix.trace (σ3 * A.1)).re use c simp [Fin.sum_univ_three, c] apply selfAdjoint_ext · simp [mul_add, σSA'] ring · simp [mul_add, σSA'] ring · simp [mul_add, σSA'] ring · simp [mul_add, σSA'] ring /-- The basis of `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` formed by Pauli matrices. -/ def σSA : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) := Basis.mk σSA_linearly_independent σSA_span /-- An auxillary function which on `i : Fin 1 ⊕ Fin 3` returns the corresponding Pauli-matrix as a self-adjoint matrix with a minus sign for `Sum.inr _`. -/ def σSAL' (i : Fin 1 ⊕ Fin 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) := match i with | Sum.inl 0 => ⟨σ0, σ0_selfAdjoint⟩ | Sum.inr 0 => ⟨-σ1, by rw [neg_mem_iff]; exact σ1_selfAdjoint⟩ | Sum.inr 1 => ⟨-σ2, by rw [neg_mem_iff]; exact σ2_selfAdjoint⟩ | Sum.inr 2 => ⟨-σ3, by rw [neg_mem_iff]; exact σ3_selfAdjoint⟩ lemma σSAL_linearly_independent : LinearIndependent ℝ σSAL' := by apply Fintype.linearIndependent_iff.mpr intro g hg simp at hg rw [Fin.sum_univ_three] at hg simp [σSAL'] at hg intro i match i with | Sum.inl 0 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ0 * A.1))) hg | Sum.inr 0 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ1 * A.1))) hg | Sum.inr 1 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ2 * A.1))) hg | Sum.inr 2 => simpa [mul_sub, mul_add] using congrArg (fun A => (Matrix.trace (PauliMatrix.σ3 * A.1))) hg lemma σSAL_span : ⊤ ≤ Submodule.span ℝ (Set.range σSAL') := by refine (top_le_span_range_iff_forall_exists_fun ℝ).mpr ?_ intro A let c : Fin 1 ⊕ Fin 3 → ℝ := fun i => match i with | Sum.inl 0 => 1/2 * (Matrix.trace (σ0 * A.1)).re | Sum.inr 0 => - 1/2 * (Matrix.trace (σ1 * A.1)).re | Sum.inr 1 => - 1/2 * (Matrix.trace (σ2 * A.1)).re | Sum.inr 2 => - 1/2 * (Matrix.trace (σ3 * A.1)).re use c simp [Fin.sum_univ_three, c] apply selfAdjoint_ext · simp [mul_add, σSAL'] ring · simp [mul_add, σSAL'] ring · simp [mul_add, σSAL'] ring · simp [mul_add, σSAL'] ring /-- The basis of `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` formed by Pauli matrices where the `1, 2, 3` pauli matrices are negated. -/ def σSAL : Basis (Fin 1 ⊕ Fin 3) ℝ (selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) := Basis.mk σSAL_linearly_independent σSAL_span lemma σSAL_decomp (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : M = (1/2 * (Matrix.trace (σ0 * M.1)).re) • σSAL (Sum.inl 0) + (-1/2 * (Matrix.trace (σ1 * M.1)).re) • σSAL (Sum.inr 0) + (-1/2 * (Matrix.trace (σ2 * M.1)).re) • σSAL (Sum.inr 1) + (-1/2 * (Matrix.trace (σ3 * M.1)).re) • σSAL (Sum.inr 2) := by apply selfAdjoint_ext · simp [σSAL, mul_add, σSAL'] ring · simp [σSAL, mul_add, σSAL'] ring · simp [σSAL, mul_add, σSAL'] ring · simp [σSAL, mul_add, σSAL'] ring @[simp] lemma σSAL_repr_inl_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inl 0) = 1 / 2 * Matrix.trace (σ0 * M.1) := by have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm simp [Fin.sum_univ_three] at hM have h0 := congrArg (fun A => Matrix.trace (σ0 * A.1)/ 2) hM simp [σSAL, σSAL', mul_add] at h0 linear_combination (norm := ring_nf) -h0 simp [σSAL] @[simp] lemma σSAL_repr_inr_0 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 0) = - 1 / 2 * Matrix.trace (σ1 * M.1) := by have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm simp [Fin.sum_univ_three] at hM have h0 := congrArg (fun A => - Matrix.trace (σ1 * A.1)/ 2) hM simp [σSAL, σSAL', mul_add] at h0 linear_combination (norm := ring_nf) -h0 simp [σSAL] @[simp] lemma σSAL_repr_inr_1 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 1) = - 1 / 2 * Matrix.trace (σ2 * M.1) := by have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm simp [Fin.sum_univ_three] at hM have h0 := congrArg (fun A => - Matrix.trace (σ2 * A.1)/ 2) hM simp [σSAL, σSAL', mul_add] at h0 linear_combination (norm := ring_nf) -h0 simp [σSAL] @[simp] lemma σSAL_repr_inr_2 (M : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : σSAL.repr M (Sum.inr 2) = - 1 / 2 * Matrix.trace (σ3 * M.1) := by have hM : M = ∑ i, σSAL.repr M i • σSAL i := (Basis.sum_repr σSAL M).symm simp [Fin.sum_univ_three] at hM have h0 := congrArg (fun A => - Matrix.trace (σ3 * A.1)/ 2) hM simp [σSAL, σSAL', mul_add] at h0 linear_combination (norm := ring_nf) -h0 simp [σSAL] lemma σSA_minkowskiMetric_σSAL (i : Fin 1 ⊕ Fin 3) : (σSA i) = minkowskiMatrix i i • (σSAL i) := by match i with | Sum.inl 0 => simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inl_0_inl_0] | Sum.inr 0 => simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i] cases i with | inl val => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] | inr val_1 => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] | Sum.inr 1 => simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i] cases i with | inl val => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] | inr val_1 => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] | Sum.inr 2 => simp [σSA, σSAL, σSA', σSAL', minkowskiMatrix.inr_i_inr_i] cases i with | inl val => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] | inr val_1 => ext i j : 2 simp_all only [NegMemClass.coe_neg, neg_apply, neg_neg] end end PauliMatrix