/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.TimeContract /-! # Wick's theorem This file contrains the time-dependent version of Wick's theorem for lists of fields containing both fermions and bosons. Wick's theorem is related to Isserlis' theorem in mathematics. -/ namespace FieldSpecification variable {𝓕 : FieldSpecification} {𝓞 : 𝓕.ProtoOperatorAlgebra} open CrAnAlgebra open StateAlgebra open ProtoOperatorAlgebra open HepLean.List open WickContraction open FieldStatistic lemma insertList_none_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ) (c : WickContraction φs.length) : 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get (c.insertList φ φs i none).uncontractedList))) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, c.uncontracted.filter (fun x => i.succAbove x < i)⟩) • 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none))) := by simp only [Nat.succ_eq_add_one, instCommGroup.eq_1, optionEraseZ] rw [crAnF_ofState_normalOrder_insert φ (c.uncontractedList.map φs.get) ⟨(c.uncontractedListOrderPos i), by simp⟩, smul_smul] trans (1 : ℂ) • 𝓞.crAnF (normalOrder (ofStateList (List.map (List.insertIdx (↑i) φ φs).get (insertList φ φs c i none).uncontractedList))) · simp congr 1 simp only [instCommGroup.eq_1] rw [← List.map_take, take_uncontractedListOrderPos_eq_filter] have h1 : (𝓕 |>ₛ List.map φs.get (List.filter (fun x => decide (↑x < i.1)) c.uncontractedList)) = 𝓕 |>ₛ ⟨φs.get, (c.uncontracted.filter (fun x => x.val < i.1))⟩ := by simp only [Nat.succ_eq_add_one, ofFinset] congr rw [uncontractedList_eq_sort] have hdup : (List.filter (fun x => decide (x.1 < i.1)) (Finset.sort (fun x1 x2 => x1 ≤ x2) c.uncontracted)).Nodup := by exact List.Nodup.filter _ (Finset.sort_nodup (fun x1 x2 => x1 ≤ x2) c.uncontracted) have hsort : (List.filter (fun x => decide (x.1 < i.1)) (Finset.sort (fun x1 x2 => x1 ≤ x2) c.uncontracted)).Sorted (· ≤ ·) := by exact List.Sorted.filter _ (Finset.sort_sorted (fun x1 x2 => x1 ≤ x2) c.uncontracted) rw [← (List.toFinset_sort (· ≤ ·) hdup).mpr hsort] congr ext a simp rw [h1] simp only [Nat.succ_eq_add_one] have h2 : (Finset.filter (fun x => x.1 < i.1) c.uncontracted) = (Finset.filter (fun x => i.succAbove x < i) c.uncontracted) := by ext a simp only [Nat.succ_eq_add_one, Finset.mem_filter, and_congr_right_iff] intro ha simp only [Fin.succAbove] split · apply Iff.intro · intro h omega · intro h rename_i h rw [Fin.lt_def] at h simp only [Fin.coe_castSucc] at h omega · apply Iff.intro · intro h rename_i h' rw [Fin.lt_def] simp only [Fin.val_succ] rw [Fin.lt_def] at h' simp only [Fin.coe_castSucc, not_lt] at h' omega · intro h rename_i h rw [Fin.lt_def] at h simp only [Fin.val_succ] at h omega rw [h2] simp only [exchangeSign_mul_self] congr simp only [Nat.succ_eq_add_one] rw [insertList_uncontractedList_none_map] lemma insertList_some_normalOrder (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted) : 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get (c.insertList φ φs i (some k)).uncontractedList))) = 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ ((uncontractedStatesEquiv φs c) k)))) := by simp only [Nat.succ_eq_add_one, insertList, optionEraseZ, uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast] congr rw [congr_uncontractedList] erw [uncontractedList_extractEquiv_symm_some] simp only [Fin.coe_succAboveEmb, List.map_eraseIdx, List.map_map] congr conv_rhs => rw [get_eq_insertIdx_succAbove φ φs i] lemma sign_timeContract_normalOrder_insertList_none (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ) (c : WickContraction φs.length) : (c.insertList φ φs i none).sign • (c.insertList φ φs i none).timeContract 𝓞 * 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get (c.insertList φ φs i none).uncontractedList))) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun k => i.succAbove k < i))⟩) • (c.sign • c.timeContract 𝓞 * 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ none)))) := by by_cases hg : GradingCompliant φs c · rw [insertList_none_normalOrder, sign_insert_none] simp only [Nat.succ_eq_add_one, timeContract_insertList_none, instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul] congr 1 rw [← mul_assoc] congr 1 rw [signInsertNone_eq_filterset _ _ _ _ hg, ← map_mul] congr rw [ofFinset_union] congr ext a simp only [Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter, Finset.mem_univ, true_and, Finset.mem_inter, not_and, not_lt, and_imp] apply Iff.intro · intro ha have ha1 := ha.1 rcases ha1 with ha1 | ha1 · exact ha1.2 · exact ha1.2 · intro ha simp only [uncontracted, Finset.mem_filter, Finset.mem_univ, true_and, ha, and_true, forall_const] have hx : c.getDual? a = none ↔ ¬ (c.getDual? a).isSome := by simp rw [hx] simp only [Bool.not_eq_true, Bool.eq_false_or_eq_true_self, true_and] intro h1 h2 simp_all · simp only [Nat.succ_eq_add_one, timeContract_insertList_none, Algebra.smul_mul_assoc, instCommGroup.eq_1] rw [timeContract_of_not_gradingCompliant] simp only [ZeroMemClass.coe_zero, zero_mul, smul_zero] exact hg lemma sign_timeContract_normalOrder_insertList_some (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ) (c : WickContraction φs.length) (k : c.uncontracted) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k]) (hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬ timeOrderRel φs[k] φ) : (c.insertList φ φs i (some k)).sign • (c.insertList φ φs i (some k)).timeContract 𝓞 * 𝓞.crAnF (normalOrder (ofStateList (List.map (φs.insertIdx i φ).get (c.insertList φ φs i (some k)).uncontractedList))) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) • (c.sign • (𝓞.contractStateAtIndex φ (List.map φs.get c.uncontractedList) ((uncontractedStatesEquiv φs c) (some k)) * c.timeContract 𝓞) * 𝓞.crAnF (normalOrder (ofStateList (optionEraseZ (c.uncontractedList.map φs.get) φ ((uncontractedStatesEquiv φs c) k))))) := by by_cases hg : GradingCompliant φs c ∧ (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[k.1]) · by_cases hk : i.succAbove k < i · rw [WickContraction.timeConract_insertList_some_eq_mul_contractStateAtIndex_not_lt] swap · exact hn _ hk rw [insertList_some_normalOrder, sign_insert_some] simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc] congr 1 rw [mul_assoc, mul_comm (sign φs c), ← mul_assoc] congr 1 exact signInsertSome_mul_filter_contracted_of_lt φ φs c i k hk hg · omega · have hik : i.succAbove ↑k ≠ i := by exact Fin.succAbove_ne i ↑k rw [WickContraction.timeConract_insertList_some_eq_mul_contractStateAtIndex_lt] swap · exact hlt _ rw [insertList_some_normalOrder] rw [sign_insert_some] simp only [instCommGroup.eq_1, smul_smul, Algebra.smul_mul_assoc] congr 1 rw [mul_assoc, mul_comm (sign φs c), ← mul_assoc] congr 1 exact signInsertSome_mul_filter_contracted_of_not_lt φ φs c i k hk hg · omega · rw [timeConract_insertList_some] simp only [Fin.getElem_fin, not_and] at hg by_cases hg' : GradingCompliant φs c · have hg := hg hg' simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, Algebra.smul_mul_assoc, instCommGroup.eq_1, contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast, List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem] by_cases h1 : i < i.succAbove ↑k · simp only [h1, ↓reduceIte, MulMemClass.coe_mul] rw [timeContract_zero_of_diff_grade] simp only [zero_mul, smul_zero] rw [crAnF_superCommute_anPart_ofState_diff_grade_zero] simp only [zero_mul, smul_zero] exact hg exact hg · simp only [h1, ↓reduceIte, MulMemClass.coe_mul] rw [timeContract_zero_of_diff_grade] simp only [zero_mul, smul_zero] rw [crAnF_superCommute_anPart_ofState_diff_grade_zero] simp only [zero_mul, smul_zero] exact hg exact fun a => hg (id (Eq.symm a)) · rw [timeContract_of_not_gradingCompliant] simp only [Nat.succ_eq_add_one, Fin.getElem_fin, mul_zero, ZeroMemClass.coe_zero, smul_zero, zero_mul, instCommGroup.eq_1] exact hg' lemma mul_sum_contractions (φ : 𝓕.States) (φs : List 𝓕.States) (i : Fin φs.length.succ) (c : WickContraction φs.length) (hlt : ∀ (k : Fin φs.length), timeOrderRel φ φs[k]) (hn : ∀ (k : Fin φs.length), i.succAbove k < i → ¬timeOrderRel φs[k] φ) : (c.sign • c.timeContract 𝓞) * 𝓞.crAnF ((CrAnAlgebra.ofState φ) * normalOrder (ofStateList (c.uncontractedList.map φs.get))) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (Finset.univ.filter (fun x => i.succAbove x < i))⟩) • ∑ (k : Option (c.uncontracted)), ((c.insertList φ φs i k).sign • (c.insertList φ φs i k).timeContract 𝓞 * 𝓞.crAnF (normalOrder (ofStateList ((c.insertList φ φs i k).uncontractedList.map (φs.insertIdx i φ).get)))) := by rw [crAnF_ofState_mul_normalOrder_ofStatesList_eq_sum, Finset.mul_sum, uncontractedStatesEquiv_list_sum, Finset.smul_sum] simp only [Finset.univ_eq_attach, instCommGroup.eq_1, Nat.succ_eq_add_one, timeContract_insertList_none] congr 1 funext n match n with | none => rw [sign_timeContract_normalOrder_insertList_none] simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_none', one_mul, Algebra.smul_mul_assoc, instCommGroup.eq_1, smul_smul] congr 1 rw [← mul_assoc, exchangeSign_mul_self] simp | some n => rw [sign_timeContract_normalOrder_insertList_some _ _ _ _ _ (fun k => hlt k) (fun k a => hn k a)] simp only [uncontractedStatesEquiv, Equiv.optionCongr_apply, Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Algebra.smul_mul_assoc, instCommGroup.eq_1, smul_smul] congr 1 · rw [← mul_assoc, exchangeSign_mul_self] rw [one_mul] · rw [← mul_assoc] congr 1 have ht := (WickContraction.timeContract 𝓞 c).prop rw [@Subalgebra.mem_center_iff] at ht rw [ht] lemma wicks_theorem_congr {φs φs' : List 𝓕.States} (h : φs = φs') : ∑ (c : WickContraction φs.length), (c.sign • c.timeContract 𝓞) * 𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs.get))) = ∑ (c : WickContraction φs'.length), (c.sign • c.timeContract 𝓞) * 𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs'.get))) := by subst h simp /-- Wick's theorem for the empty list. -/ lemma wicks_theorem_nil : 𝓞.crAnF (ofStateAlgebra (timeOrder (ofList []))) = ∑ (c : WickContraction [].length), (c.sign [] • c.timeContract 𝓞) * 𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map [].get))) := by rw [timeOrder_ofList_nil] simp only [map_one, List.length_nil, Algebra.smul_mul_assoc] rw [sum_WickContraction_nil, nil_zero_uncontractedList] simp only [List.map_nil] have h1 : ofStateList (𝓕 := 𝓕) [] = CrAnAlgebra.ofCrAnList [] := by simp rw [h1, normalOrder_ofCrAnList] simp [WickContraction.timeContract, empty, sign] lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) : timeOrder (ofList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get, (Finset.filter (fun x => (maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) • StateAlgebra.ofState (maxTimeField φ φs) * timeOrder (ofList (eraseMaxTimeField φ φs)) := by rw [timeOrder_eq_maxTimeField_mul] congr 3 apply FieldStatistic.ofList_perm nth_rewrite 1 [← List.finRange_map_get (φ :: φs)] simp only [List.length_cons, eraseMaxTimeField, insertionSortDropMinPos] rw [eraseIdx_get, ← List.map_take, ← List.map_map] refine List.Perm.map (φ :: φs).get ?_ apply (List.perm_ext_iff_of_nodup _ _).mpr · intro i simp only [List.length_cons, maxTimeFieldPos, mem_take_finrange, Fin.val_fin_lt, List.mem_map, Finset.mem_sort, Finset.mem_filter, Finset.mem_univ, true_and, Function.comp_apply] refine Iff.intro (fun hi => ?_) (fun h => ?_) · have h2 := (maxTimeFieldPosFin φ φs).2 simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one, maxTimeFieldPosFin, insertionSortMinPosFin] at h2 use ⟨i, by omega⟩ apply And.intro · simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, maxTimeFieldPosFin, insertionSortMinPosFin, Nat.succ_eq_add_one, Fin.mk_lt_mk, Fin.val_fin_lt, Fin.succ_mk] rw [Fin.lt_def] split · simp only [Fin.val_fin_lt] omega · omega · simp only [Fin.succAbove, List.length_cons, Fin.castSucc_mk, Fin.succ_mk, Fin.ext_iff, Fin.coe_cast] split · simp · simp_all [Fin.lt_def] · obtain ⟨j, h1, h2⟩ := h subst h2 simp only [Fin.lt_def, Fin.coe_cast] exact h1 · exact List.Sublist.nodup (List.take_sublist _ _) <| List.nodup_finRange (φs.length + 1) · refine List.Nodup.map ?_ ?_ · refine Function.Injective.comp ?hf.hg Fin.succAbove_right_injective exact Fin.cast_injective (eraseIdx_length (φ :: φs) (insertionSortMinPos timeOrderRel φ φs)) · exact Finset.sort_nodup (fun x1 x2 => x1 ≤ x2) (Finset.filter (fun x => (maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ) /-- Wick's theorem for time-ordered products of bosonic and fermionic fields. -/ theorem wicks_theorem : (φs : List 𝓕.States) → 𝓞.crAnF (ofStateAlgebra (timeOrder (ofList φs))) = ∑ (c : WickContraction φs.length), (c.sign φs • c.timeContract 𝓞) * 𝓞.crAnF (normalOrder (ofStateList (c.uncontractedList.map φs.get))) | [] => wicks_theorem_nil | φ :: φs => by have ih := wicks_theorem (eraseMaxTimeField φ φs) rw [timeOrder_eq_maxTimeField_mul_finset, map_mul, map_mul, ih, Finset.mul_sum] have h1 : φ :: φs = (eraseMaxTimeField φ φs).insertIdx (maxTimeFieldPosFin φ φs) (maxTimeField φ φs) := by simp only [eraseMaxTimeField, insertionSortDropMinPos, List.length_cons, Nat.succ_eq_add_one, maxTimeField, insertionSortMin, List.get_eq_getElem] erw [insertIdx_eraseIdx_fin] rw [wicks_theorem_congr h1] conv_rhs => rw [insertLift_sum] congr funext c have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center ℂ 𝓞.A) (WickContraction.timeContract 𝓞 c).2 (sign (eraseMaxTimeField φ φs) c)) rw [map_smul, map_smul, Algebra.smul_mul_assoc, ← mul_assoc, ht, mul_assoc, ← map_mul] rw [ofStateAlgebra_ofState, mul_sum_contractions (𝓞 := 𝓞) (maxTimeField φ φs) (eraseMaxTimeField φ φs) (maxTimeFieldPosFin φ φs) c] trans (1 : ℂ) • ∑ k : Option { x // x ∈ c.uncontracted }, sign (List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs)) (insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k) • ↑(WickContraction.timeContract 𝓞 (insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k)) * 𝓞.crAnF (normalOrder (ofStateList (List.map (List.insertIdx (↑(maxTimeFieldPosFin φ φs)) (maxTimeField φ φs) (eraseMaxTimeField φ φs)).get (insertList (maxTimeField φ φs) (eraseMaxTimeField φ φs) c (maxTimeFieldPosFin φ φs) k).uncontractedList))) swap · simp rw [smul_smul] simp only [instCommGroup.eq_1, exchangeSign_mul_self, Nat.succ_eq_add_one, Algebra.smul_mul_assoc, Fintype.sum_option, timeContract_insertList_none, Finset.univ_eq_attach, smul_add, one_smul] · exact fun k => timeOrder_maxTimeField _ _ k · exact fun k => lt_maxTimeFieldPosFin_not_timeOrder _ _ k termination_by φs => φs.length end FieldSpecification