/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Lorentz.ComplexTensor.Metrics.Basis import HepLean.Lorentz.ComplexTensor.Units.Basic /-! ## Basic lemmas regarding metrics -/ open IndexNotation open CategoryTheory open MonoidalCategory open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory open TensorTree open OverColor.Discrete noncomputable section namespace complexLorentzTensor /-! ## Symmetry properties -/ informal_lemma coMetric_symm where math :≈ "The covariant metric is symmetric {η' | μ ν = η' | ν μ}ᵀ" deps :≈ [``coMetric] informal_lemma contrMetric_symm where math :≈ "The contravariant metric is symmetric {η | μ ν = η | ν μ}ᵀ" deps :≈ [``contrMetric] informal_lemma leftMetric_antisymm where math :≈ "The left metric is antisymmetric {εL | α α' = - εL | α' α}ᵀ" deps :≈ [``leftMetric] informal_lemma rightMetric_antisymm where math :≈ "The right metric is antisymmetric {εR | β β' = - εR | β' β}ᵀ" deps :≈ [``rightMetric] informal_lemma altLeftMetric_antisymm where math :≈ "The alt-left metric is antisymmetric {εL' | α α' = - εL' | α' α}ᵀ" deps :≈ [``altLeftMetric] informal_lemma altRightMetric_antisymm where math :≈ "The alt-right metric is antisymmetric {εR' | β β' = - εR' | β' β}ᵀ" deps :≈ [``altRightMetric] /-! ## Contractions with each other -/ informal_lemma coMetric_contr_contrMetric where math :≈ "The contraction of the covariant metric with the contravariant metric is the unit {η' | μ ρ ⊗ η | ρ ν = δ' | μ ν}ᵀ" deps :≈ [``coMetric, ``contrMetric, ``coContrUnit] informal_lemma contrMetric_contr_coMetric where math :≈ "The contraction of the contravariant metric with the covariant metric is the unit {η | μ ρ ⊗ η' | ρ ν = δ | μ ν}ᵀ" deps :≈ [``contrMetric, ``coMetric, ``contrCoUnit] informal_lemma leftMetric_contr_altLeftMetric where math :≈ "The contraction of the left metric with the alt-left metric is the unit {εL | α β ⊗ εL' | β γ = δL | α γ}ᵀ" deps :≈ [``leftMetric, ``altLeftMetric, ``leftAltLeftUnit] informal_lemma rightMetric_contr_altRightMetric where math :≈ "The contraction of the right metric with the alt-right metric is the unit {εR | α β ⊗ εR' | β γ = δR | α γ}ᵀ" deps :≈ [``rightMetric, ``altRightMetric, ``rightAltRightUnit] informal_lemma altLeftMetric_contr_leftMetric where math :≈ "The contraction of the alt-left metric with the left metric is the unit {εL' | α β ⊗ εL | β γ = δL' | α γ}ᵀ" deps :≈ [``altLeftMetric, ``leftMetric, ``altLeftLeftUnit] informal_lemma altRightMetric_contr_rightMetric where math :≈ "The contraction of the alt-right metric with the right metric is the unit {εR' | α β ⊗ εR | β γ = δR' | α γ}ᵀ" deps :≈ [``altRightMetric, ``rightMetric, ``altRightRightUnit] /-! ## Other relations -/ /-- The map to color one gets when multiplying left and right metrics. -/ def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm /-- Expansion of the product of `εL` and `εR` in terms of a basis. -/ lemma leftMetric_prod_rightMetric : {εL | α α' ⊗ εR | β β'}ᵀ.tensor = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) - basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) - basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by rw [prod_tensor_eq_fst (leftMetric_expand_tree)] rw [prod_tensor_eq_snd (rightMetric_expand_tree)] rw [prod_add_both] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_tensor_eq <| prod_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| smul_eq_one _ _ (by simp)] rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_fst <| add_tensor_eq_fst <| prod_basisVector_tree _ _] rw [add_tensor_eq_fst <| add_tensor_eq_snd <| smul_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_basisVector_tree _ _] rw [← add_assoc] simp only [add_tensor, smul_tensor, tensorNode_tensor] change _ = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) +- basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) +- basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) congr 1 congr 1 congr 1 all_goals congr funext x fin_cases x <;> rfl /-- Expansion of the product of `εL` and `εR` in terms of a basis, as a tensor tree. -/ lemma leftMetric_prod_rightMetric_tree : {εL | α α' ⊗ εR | β β'}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1))) <| TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0)))) <| TensorTree.add (TensorTree.smul (-1 : ℂ) (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1)))) <| (tensorNode (basisVector leftMetricMulRightMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0)))).tensor := by rw [leftMetric_prod_rightMetric] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl end complexLorentzTensor