/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Meta.Informal import HepLean.SpaceTime.SL2C.Basic import Mathlib.RepresentationTheory.Rep import HepLean.Tensors.Basic import HepLean.SpaceTime.WeylFermion.Modules import Mathlib.Logic.Equiv.TransferInstance /-! # Weyl fermions A good reference for the material in this file is: https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf -/ namespace Fermion noncomputable section open Matrix open MatrixGroups open Complex open TensorProduct /-- The vector space ℂ^2 carrying the fundamental representation of SL(2,C). In index notation corresponds to a Weyl fermion with indices ψ_a. -/ def leftHanded : Rep ℂ SL(2,ℂ) := Rep.of { toFun := fun M => { toFun := fun (ψ : LeftHandedModule) => LeftHandedModule.toFin2ℂEquiv.symm (M.1 *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp [mulVec_add] map_smul' := by intro r ψ simp [mulVec_smul]} map_one' := by ext i simp map_mul' := fun M N => by simp only [SpecialLinearGroup.coe_mul] ext1 x simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec]} /-- The vector space ℂ^2 carrying the representation of SL(2,C) given by M → (M⁻¹)ᵀ. In index notation corresponds to a Weyl fermion with indices ψ^a. -/ def altLeftHanded : Rep ℂ SL(2,ℂ) := Rep.of { toFun := fun M => { toFun := fun (ψ : AltLeftHandedModule) => AltLeftHandedModule.toFin2ℂEquiv.symm ((M.1⁻¹)ᵀ *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp [mulVec_add] map_smul' := by intro r ψ simp [mulVec_smul]} map_one' := by ext i simp map_mul' := fun M N => by ext1 x simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq] refine (congrFun (congrArg _ ?_) _) rw [Matrix.mul_inv_rev] exact transpose_mul _ _} /-- The vector space ℂ^2 carrying the conjugate representation of SL(2,C). In index notation corresponds to a Weyl fermion with indices ψ_{dot a}. -/ def rightHanded : Rep ℂ SL(2,ℂ) := Rep.of { toFun := fun M => { toFun := fun (ψ : RightHandedModule) => RightHandedModule.toFin2ℂEquiv.symm (M.1.map star *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp [mulVec_add] map_smul' := by intro r ψ simp [mulVec_smul]} map_one' := by ext i simp map_mul' := fun M N => by ext1 x simp only [SpecialLinearGroup.coe_mul, RCLike.star_def, Matrix.map_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec]} /-- The vector space ℂ^2 carrying the representation of SL(2,C) given by M → (M⁻¹)^†. In index notation this corresponds to a Weyl fermion with index `ψ^{dot a}`. -/ def altRightHanded : Rep ℂ SL(2,ℂ) := Rep.of { toFun := fun M => { toFun := fun (ψ : AltRightHandedModule) => AltRightHandedModule.toFin2ℂEquiv.symm ((M.1⁻¹).conjTranspose *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp [mulVec_add] map_smul' := by intro r ψ simp [mulVec_smul]} map_one' := by ext i simp map_mul' := fun M N => by ext1 x simp only [SpecialLinearGroup.coe_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec, EmbeddingLike.apply_eq_iff_eq] refine (congrFun (congrArg _ ?_) _) rw [Matrix.mul_inv_rev] exact conjTranspose_mul _ _} /-! ## Equivalences between Weyl fermion vector spaces. -/ /-- The morphism between the representation `leftHanded` and the representation `altLeftHanded` defined by multiplying an element of `leftHanded` by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`. -/ def leftHandedToAlt : leftHanded ⟶ altLeftHanded where hom := { toFun := fun ψ => AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp only [mulVec_add, LinearEquiv.map_add] map_smul' := by intro a ψ simp only [mulVec_smul, LinearEquiv.map_smul] rfl} comm := by intro M refine LinearMap.ext (fun ψ => ?_) change AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ M.1 *ᵥ ψ.val) = AltLeftHandedModule.toFin2ℂEquiv.symm ((M.1⁻¹)ᵀ *ᵥ !![0, 1; -1, 0] *ᵥ ψ.val) apply congrArg rw [mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe, eta_fin_two M.1] refine congrFun (congrArg _ ?_) _ rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two, Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ] simp lemma leftHandedToAlt_hom_apply (ψ : leftHanded) : leftHandedToAlt.hom ψ = AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2ℂ) := rfl /-- The morphism from `altLeftHanded` to `leftHanded` defined by multiplying an element of altLeftHandedWeyl by the matrix `εₐ₁ₐ₂ = !![0, -1; 1, 0]`. -/ def leftHandedAltTo : altLeftHanded ⟶ leftHanded where hom := { toFun := fun ψ => LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2ℂ), map_add' := by intro ψ ψ' simp only [map_add] rw [mulVec_add, LinearEquiv.map_add] map_smul' := by intro a ψ simp only [LinearEquiv.map_smul] rw [mulVec_smul, LinearEquiv.map_smul] rfl} comm := by intro M refine LinearMap.ext (fun ψ => ?_) change LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ (M.1⁻¹)ᵀ *ᵥ ψ.val) = LeftHandedModule.toFin2ℂEquiv.symm (M.1 *ᵥ !![0, -1; 1, 0] *ᵥ ψ.val) rw [EquivLike.apply_eq_iff_eq, mulVec_mulVec, mulVec_mulVec, SpaceTime.SL2C.inverse_coe, eta_fin_two M.1] refine congrFun (congrArg _ ?_) _ rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two, Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ] simp lemma leftHandedAltTo_hom_apply (ψ : altLeftHanded) : leftHandedAltTo.hom ψ = LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2ℂ) := rfl /-- The equivalence between the representation `leftHanded` and the representation `altLeftHanded` defined by multiplying an element of `leftHanded` by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`. -/ def leftHandedAltEquiv : leftHanded ≅ altLeftHanded where hom := leftHandedToAlt inv := leftHandedAltTo hom_inv_id := by ext ψ simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom, ModuleCat.id_apply] rw [leftHandedAltTo_hom_apply, leftHandedToAlt_hom_apply] rw [AltLeftHandedModule.toFin2ℂ, LinearEquiv.apply_symm_apply, mulVec_mulVec] rw [show (!![0, -1; (1 : ℂ), 0] * !![0, 1; -1, 0]) = 1 by simpa using Eq.symm one_fin_two] rw [one_mulVec] rfl inv_hom_id := by ext ψ simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Action.id_hom, ModuleCat.id_apply] rw [leftHandedAltTo_hom_apply, leftHandedToAlt_hom_apply, LeftHandedModule.toFin2ℂ, LinearEquiv.apply_symm_apply, mulVec_mulVec] rw [show (!![0, (1 : ℂ); -1, 0] * !![0, -1; 1, 0]) = 1 by simpa using Eq.symm one_fin_two] rw [one_mulVec] rfl lemma leftHandedAltEquiv_hom_hom_apply (ψ : leftHanded) : leftHandedAltEquiv.hom.hom ψ = AltLeftHandedModule.toFin2ℂEquiv.symm (!![0, 1; -1, 0] *ᵥ ψ.toFin2ℂ) := rfl lemma leftHandedAltEquiv_inv_hom_apply (ψ : altLeftHanded) : leftHandedAltEquiv.inv.hom ψ = LeftHandedModule.toFin2ℂEquiv.symm (!![0, -1; 1, 0] *ᵥ ψ.toFin2ℂ) := rfl informal_definition rightHandedWeylAltEquiv where math :≈ "The linear equiv between rightHandedWeyl and altRightHandedWeyl given by multiplying an element of rightHandedWeyl by the matrix `εᵃ⁰ᵃ¹ = !![0, 1; -1, 0]]`" deps :≈ [``rightHanded, ``altRightHanded] informal_lemma rightHandedWeylAltEquiv_equivariant where math :≈ "The linear equiv rightHandedWeylAltEquiv is equivariant with respect to the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl." deps :≈ [``rightHandedWeylAltEquiv] /-! ## Contraction of Weyl fermions. -/ open CategoryTheory.MonoidalCategory /-- The bi-linear map corresponding to contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion. -/ def leftAltBi : leftHanded →ₗ[ℂ] altLeftHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] rw [add_dotProduct] map_smul' r ψ := by refine LinearMap.ext (fun φ => ?_) simp only [LinearEquiv.map_smul, LinearMap.coe_mk, AddHom.coe_mk] rw [smul_dotProduct] rfl /-- The bi-linear map corresponding to contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion. -/ def altLeftBi : altLeftHanded →ₗ[ℂ] leftHanded →ₗ[ℂ] ℂ where toFun ψ := { toFun := fun φ => ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ, map_add' := by intro φ φ' simp only [map_add] rw [dotProduct_add] map_smul' := by intro r φ simp only [LinearEquiv.map_smul] rw [dotProduct_smul] rfl} map_add' ψ ψ':= by refine LinearMap.ext (fun φ => ?_) simp only [map_add, add_dotProduct, vec2_dotProduct, Fin.isValue, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply] map_smul' ψ ψ' := by refine LinearMap.ext (fun φ => ?_) simp only [_root_.map_smul, smul_dotProduct, vec2_dotProduct, Fin.isValue, smul_eq_mul, LinearMap.coe_mk, AddHom.coe_mk, RingHom.id_apply, LinearMap.smul_apply] /-- The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to ℂ given by summing over components of leftHandedWeyl and altLeftHandedWeyl in the standard basis (i.e. the dot product). Physically, the contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion. In index notation this is ψ_a φ^a. -/ def leftAltContraction : leftHanded ⊗ altLeftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := TensorProduct.lift leftAltBi comm M := by apply TensorProduct.ext' intro ψ φ change (M.1 *ᵥ ψ.toFin2ℂ) ⬝ᵥ (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ rw [dotProduct_mulVec, vecMul_transpose, mulVec_mulVec] simp lemma leftAltContraction_hom_tmul (ψ : leftHanded) (φ : altLeftHanded) : leftAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2ℂ ⬝ᵥ φ.toFin2ℂ := by rw [leftAltContraction] erw [TensorProduct.lift.tmul] rfl /-- The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to ℂ given by summing over components of altLeftHandedWeyl and leftHandedWeyl in the standard basis (i.e. the dot product). Physically, the contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is φ^a ψ_a. -/ def altLeftContraction : altLeftHanded ⊗ leftHanded ⟶ 𝟙_ (Rep ℂ SL(2,ℂ)) where hom := TensorProduct.lift altLeftBi comm M := by apply TensorProduct.ext' intro φ ψ change (M.1⁻¹ᵀ *ᵥ φ.toFin2ℂ) ⬝ᵥ (M.1 *ᵥ ψ.toFin2ℂ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ rw [dotProduct_mulVec, mulVec_transpose, vecMul_vecMul] simp lemma altLeftContraction_hom_tmul (φ : altLeftHanded) (ψ : leftHanded) : altLeftContraction.hom (φ ⊗ₜ ψ) = φ.toFin2ℂ ⬝ᵥ ψ.toFin2ℂ := by rw [altLeftContraction] erw [TensorProduct.lift.tmul] rfl lemma leftAltContraction_apply_symm (ψ : leftHanded) (φ : altLeftHanded) : leftAltContraction.hom (ψ ⊗ₜ φ) = altLeftContraction.hom (φ ⊗ₜ ψ) := by rw [altLeftContraction_hom_tmul, leftAltContraction_hom_tmul] exact dotProduct_comm ψ.toFin2ℂ φ.toFin2ℂ /-- A manifestation of the statement that `ψ ψ' = - ψ' ψ` where `ψ` and `ψ'` are `leftHandedWeyl`. -/ lemma leftAltContraction_apply_leftHandedAltEquiv (ψ ψ' : leftHanded) : leftAltContraction.hom (ψ ⊗ₜ leftHandedAltEquiv.hom.hom ψ') = - leftAltContraction.hom (ψ' ⊗ₜ leftHandedAltEquiv.hom.hom ψ) := by rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul, leftHandedAltEquiv_hom_hom_apply, leftHandedAltEquiv_hom_hom_apply] simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit, CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse, Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj, cons_mulVec, cons_dotProduct, zero_mul, one_mul, dotProduct_empty, add_zero, zero_add, neg_mul, empty_mulVec, LinearEquiv.apply_symm_apply, dotProduct_cons, mul_neg, neg_add_rev, neg_neg] ring /-- A manifestation of the statement that `φ φ' = - φ' φ` where `φ` and `φ'` are `altLeftHandedWeyl`. -/ lemma leftAltContraction_apply_leftHandedAltEquiv_inv (φ φ' : altLeftHanded) : leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ ⊗ₜ φ') = - leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ' ⊗ₜ φ) := by rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul, leftHandedAltEquiv_inv_hom_apply, leftHandedAltEquiv_inv_hom_apply] simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit, CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse, Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj, cons_mulVec, cons_dotProduct, zero_mul, neg_mul, one_mul, dotProduct_empty, add_zero, zero_add, empty_mulVec, LinearEquiv.apply_symm_apply, neg_add_rev, neg_neg] ring informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed with the braiding of the tensor product." deps :≈ [``leftAltContraction, ``altLeftContraction] informal_lemma altLeftWeylContraction_invariant where math :≈ "The contraction altLeftWeylContraction is invariant with respect to the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl." deps :≈ [``altLeftContraction] informal_definition rightAltWeylContraction where math :≈ "The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to ℂ given by summing over components of rightHandedWeyl and altRightHandedWeyl in the standard basis (i.e. the dot product)." physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is ψ_{dot a} φ^{dot a}." deps :≈ [``rightHanded, ``altRightHanded] informal_lemma rightAltWeylContraction_invariant where math :≈ "The contraction rightAltWeylContraction is invariant with respect to the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl." deps :≈ [``rightAltWeylContraction] informal_definition altRightWeylContraction where math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to ℂ given by summing over components of altRightHandedWeyl and rightHandedWeyl in the standard basis (i.e. the dot product)." physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion. In index notation this is φ^{dot a} ψ_{dot a}." deps :≈ [``rightHanded, ``altRightHanded] informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed with the braiding of the tensor product." deps :≈ [``rightAltWeylContraction, ``altRightWeylContraction] informal_lemma altRightWeylContraction_invariant where math :≈ "The contraction altRightWeylContraction is invariant with respect to the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl." deps :≈ [``altRightWeylContraction] end end Fermion