/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.Real.Basic import HepLean.SpaceTime.LorentzTensor.Real.LorentzAction /-! # Multiplication of Real Lorentz Tensors along an index We define the multiplication of two singularly marked Lorentz tensors along the marked index. This is equivalent to contracting two Lorentz tensors. We prove various results about this multiplication. -/ /-! TODO: Set up a good notation for the multiplication. -/ namespace RealLorentzTensor variable {d : ℕ} {X Y : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] (T : RealLorentzTensor d X) (c : X → Colors) (Λ Λ' : LorentzGroup d) {μ : Colors} open Marked /-- The contraction of the marked indices of two tensors each with one marked index, which is dual to the others. The contraction is done via `φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/ @[simps!] def mul {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : RealLorentzTensor d (X ⊕ Y) where color := Sum.elim T.unmarkedColor S.unmarkedColor coord := fun i => ∑ x, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue x)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue $ colorsIndexDualCast h x)) /-- The index value appearing in the multiplication of Marked tensors on the left. -/ def mulFstArg {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1} (i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor)) (x : ColorsIndex d (T.color (markedPoint X 0))) : IndexValue d T.color := splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue x) lemma mulFstArg_inr {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1} (i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor)) (x : ColorsIndex d (T.color (markedPoint X 0))) : mulFstArg i x (Sum.inr 0) = x := by rfl lemma mulFstArg_inl {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1} (i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor)) (x : ColorsIndex d (T.color (markedPoint X 0))) (c : X): mulFstArg i x (Sum.inl c) = i (Sum.inl c) := by rfl /-- The index value appearing in the multiplication of Marked tensors on the right. -/ def mulSndArg {X Y : Type} {T : Marked d X 1} {S : Marked d Y 1} (i : IndexValue d (Sum.elim T.unmarkedColor S.unmarkedColor)) (x : ColorsIndex d (T.color (markedPoint X 0))) (h : T.markedColor 0 = τ (S.markedColor 0)) : IndexValue d S.color := splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue $ colorsIndexDualCast h x) /-! ## Expressions for multiplication -/ /-! TODO: Where appropriate write these expresions in terms of `indexValueDualIso`. -/ lemma mul_colorsIndex_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ x, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue $ colorsIndexDualCast (color_eq_dual_symm h) x)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, oneMarkedIndexValue x)) := by funext i rw [← Equiv.sum_comp (colorsIndexDualCast h)] apply Finset.sum_congr rfl (fun x _ => ?_) congr rw [← colorsIndexDualCast_symm] exact (Equiv.apply_eq_iff_eq_symm_apply (colorsIndexDualCast h)).mp rfl lemma mul_indexValue_left {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ j, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, (oneMarkedIndexValue $ (colorsIndexDualCast h) $ oneMarkedIndexValue.symm j))) := by funext i rw [← Equiv.sum_comp (oneMarkedIndexValue)] rfl lemma mul_indexValue_right {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : (mul T S h).coord = fun i => ∑ j, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, j)) := by funext i rw [mul_colorsIndex_right] rw [← Equiv.sum_comp (oneMarkedIndexValue)] apply Finset.sum_congr rfl (fun x _ => ?_) congr exact Eq.symm (colorsIndexDualCast_symm h) /-! ## Properties of multiplication -/ /-- Multiplication is well behaved with regard to swapping tensors. -/ lemma mul_symm {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 0)) : mapIso d (Equiv.sumComm X Y) (mul T S h) = mul S T (color_eq_dual_symm h) := by refine ext ?_ ?_ · funext a cases a with | inl _ => rfl | inr _ => rfl · funext i rw [mul_colorsIndex_right] refine Fintype.sum_congr _ _ (fun x => ?_) rw [mul_comm] rfl /-- Multiplication commutes with `mapIso`. -/ lemma mul_mapIso {X Y Z : Type} (T : Marked d X 1) (S : Marked d Y 1) (f : X ≃ W) (g : Y ≃ Z) (h : T.markedColor 0 = τ (S.markedColor 0)) : mapIso d (Equiv.sumCongr f g) (mul T S h) = mul (mapIso d (Equiv.sumCongr f (Equiv.refl _)) T) (mapIso d (Equiv.sumCongr g (Equiv.refl _)) S) h := by refine ext ?_ ?_ · funext a cases a with | inl _ => rfl | inr _ => rfl · funext i rw [mapIso_apply_coord, mul_coord, mul_coord] refine Fintype.sum_congr _ _ (fun x => ?_) rw [mapIso_apply_coord, mapIso_apply_coord] refine Mathlib.Tactic.Ring.mul_congr ?_ ?_ rfl · apply congrArg exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl · apply congrArg exact (Equiv.symm_apply_eq splitIndexValue).mpr rfl /-! ## Lorentz action and multiplication. -/ /-- The marked Lorentz Action leaves multiplication invariant. -/ lemma mul_markedLorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ •ₘ T) (Λ •ₘ S) h = mul T S h := by refine ext rfl ?_ funext i change ∑ x, (∑ j, toTensorRepMat Λ (oneMarkedIndexValue x) j * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j))) * (∑ k, toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k))) = _ trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * toTensorRepMat Λ (oneMarkedIndexValue x) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun x _ => ?_) rw [Finset.sum_mul_sum ] apply Finset.sum_congr rfl (fun j _ => ?_) apply Finset.sum_congr rfl (fun k _ => ?_) ring rw [Finset.sum_comm] trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (oneMarkedIndexValue $ colorsIndexDualCast h x) k * toTensorRepMat Λ (oneMarkedIndexValue x) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun j _ => ?_) rw [Finset.sum_comm] trans ∑ j, ∑ k, (toTensorRepMat 1 (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k) j) * T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, j)) * S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) rw [← Finset.sum_mul, ← Finset.sum_mul] erw [toTensorRepMap_sum_dual] rfl rw [Finset.sum_comm] trans ∑ k, T.coord (splitIndexValue.symm ((indexValueSumEquiv i).1, (oneMarkedIndexValue $ (colorsIndexDualCast h).symm $ oneMarkedIndexValue.symm k)))* S.coord (splitIndexValue.symm ((indexValueSumEquiv i).2, k)) apply Finset.sum_congr rfl (fun k _ => ?_) rw [← Finset.sum_mul, ← toTensorRepMat_one_coord_sum T] rw [← Equiv.sum_comp (oneMarkedIndexValue)] erw [← Equiv.sum_comp (colorsIndexDualCast h)] simp rfl /-- The unmarked Lorentz Action commutes with multiplication. -/ lemma mul_unmarkedLorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ •ᵤₘ T) (Λ •ᵤₘ S) h = Λ • mul T S h := by refine ext rfl ?_ funext i change ∑ x, (∑ j, toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* ∑ k, toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) = _ trans ∑ x, ∑ j, ∑ k, (toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) · apply Finset.sum_congr rfl (fun x _ => ?_) rw [Finset.sum_mul_sum ] apply Finset.sum_congr rfl (fun j _ => ?_) apply Finset.sum_congr rfl (fun k _ => ?_) ring rw [Finset.sum_comm] trans ∑ j, ∑ k, ∑ x, (toTensorRepMat Λ (indexValueSumEquiv i).1 j * T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x)))* toTensorRepMat Λ (indexValueSumEquiv i).2 k * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) · exact Finset.sum_congr rfl (fun j _ => Finset.sum_comm) trans ∑ j, ∑ k, ((toTensorRepMat Λ (indexValueSumEquiv i).1 j) * toTensorRepMat Λ (indexValueSumEquiv i).2 k) * ∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) · apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) rw [Finset.mul_sum] apply Finset.sum_congr rfl (fun x _ => ?_) ring trans ∑ j, ∑ k, toTensorRepMat Λ i (indexValueSumEquiv.symm (j, k)) * ∑ x, (T.coord (splitIndexValue.symm (j, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm (k, oneMarkedIndexValue $ colorsIndexDualCast h x)) apply Finset.sum_congr rfl (fun j _ => Finset.sum_congr rfl (fun k _ => ?_)) · rw [toTensorRepMat_of_indexValueSumEquiv'] congr simp only [IndexValue, Finset.mem_univ, Prod.mk.eta, Equiv.symm_apply_apply, mul_color] trans ∑ p, toTensorRepMat Λ i p * ∑ x, (T.coord (splitIndexValue.symm ((indexValueSumEquiv p).1, oneMarkedIndexValue x))) * S.coord (splitIndexValue.symm ((indexValueSumEquiv p).2, oneMarkedIndexValue $ colorsIndexDualCast h x)) · erw [← Equiv.sum_comp indexValueSumEquiv.symm] exact Eq.symm Fintype.sum_prod_type rfl /-- The Lorentz action commutes with multiplication. -/ lemma mul_lorentzAction (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor 0 = τ (S.markedColor 1)) : mul (Λ • T) (Λ • S) h = Λ • mul T S h := by simp only [← marked_unmarked_action_eq_action] rw [mul_markedLorentzAction, mul_unmarkedLorentzAction] /-! ## Multiplication on selected indices -/ variable {n m : ℕ} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] {X' Y' Z : Type} [Fintype X'] [DecidableEq X'] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] /-- The multiplication of two real Lorentz Tensors along specified indices. -/ @[simps!] def mulS (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y) (h : T.color x = τ (S.color y)) : RealLorentzTensor d ({x' // x' ≠ x} ⊕ {y' // y' ≠ y}) := mul (markSingle x T) (markSingle y S) h /-- The first index value appearing in the multiplication of two Lorentz tensors. -/ def mulSFstArg {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) : IndexValue d T.color := (markSingleIndexValue T x).symm (mulFstArg i a) lemma mulSFstArg_ext {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} {i j : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)} {a b : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))} (hij : i = j) (hab : a = b) : mulSFstArg i a = mulSFstArg j b := by subst hij; subst hab rfl lemma mulSFstArg_on_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) : mulSFstArg i a x = a := by rw [mulSFstArg, markSingleIndexValue] simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply, Sum.map_inr, id_eq] erw [markEmbeddingIndexValue_apply_symm_on_mem] swap simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.image_singleton, embedSingleton_apply, Finset.mem_singleton] rw [indexValueIso_symm_apply'] erw [Equiv.symm_apply_eq, Equiv.symm_apply_eq] simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast] symm apply cast_eq_iff_heq.mpr rw [embedSingleton_toEquivRange_symm] rfl lemma mulSFstArg_on_not_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) (c : X) (hc : c ≠ x) : mulSFstArg i a c = i (Sum.inl ⟨c, hc⟩) := by rw [mulSFstArg, markSingleIndexValue] simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply, Sum.map_inr, id_eq] erw [markEmbeddingIndexValue_apply_symm_on_not_mem] swap simpa using hc rfl /-- The second index value appearing in the multiplication of two Lorentz tensors. -/ def mulSSndArg {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) (h : T.color x = τ (S.color y)) : IndexValue d S.color := (markSingleIndexValue S y).symm (mulSndArg i a h) lemma mulSSndArg_on_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) (h : T.color x = τ (S.color y)) : mulSSndArg i a h y = colorsIndexDualCast h a := by rw [mulSSndArg, markSingleIndexValue] simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply, Sum.map_inr, id_eq] erw [markEmbeddingIndexValue_apply_symm_on_mem] swap simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.image_singleton, embedSingleton_apply, Finset.mem_singleton] rw [indexValueIso_symm_apply'] erw [Equiv.symm_apply_eq, Equiv.symm_apply_eq] simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast] symm apply cast_eq_iff_heq.mpr rw [embedSingleton_toEquivRange_symm] rfl lemma mulSSndArg_on_not_mem {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) (a : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))) (h : T.color x = τ (S.color y)) (c : Y) (hc : c ≠ y) : mulSSndArg i a h c = i (Sum.inr ⟨c, hc⟩) := by rw [mulSSndArg, markSingleIndexValue] simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.symm_trans_apply, Sum.map_inr, id_eq] erw [markEmbeddingIndexValue_apply_symm_on_not_mem] swap simpa using hc rfl lemma mulSSndArg_ext {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {x : X} {y : Y} {i j : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)} {a b : ColorsIndex d ((markSingle x T).color (markedPoint {x' // x' ≠ x} 0))} (h : T.color x = τ (S.color y)) (hij : i = j) (hab : a = b) : mulSSndArg i a h = mulSSndArg j b h := by subst hij subst hab rfl lemma mulS_coord_arg (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y) (h : T.color x = τ (S.color y)) (i : IndexValue d (Sum.elim (markSingle x T).unmarkedColor (markSingle y S).unmarkedColor)) : (mulS T S x y h).coord i = ∑ a, T.coord (mulSFstArg i a) * S.coord (mulSSndArg i a h) := by rfl lemma mulS_mapIso (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (eX : X ≃ X') (eY : Y ≃ Y') (x : X) (y : Y) (x' : X') (y' : Y') (hx : eX x = x') (hy : eY y = y') (h : T.color x = τ (S.color y)) : mulS (mapIso d eX T) (mapIso d eY S) x' y' (by subst hx hy; simpa using h) = mapIso d (Equiv.sumCongr (equivSingleCompl eX hx) (equivSingleCompl eY hy)) (mulS T S x y h) := by rw [mulS, mulS, mul_mapIso] congr 1 <;> rw [markSingle_mapIso] lemma mulS_lorentzAction (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y) (h : T.color x = τ (S.color y)) (Λ : LorentzGroup d) : mulS (Λ • T) (Λ • S) x y h = Λ • mulS T S x y h := by rw [mulS, mulS, ← mul_lorentzAction] congr 1 all_goals rw [markSingle, markEmbedding, Equiv.trans_apply] erw [lorentzAction_mapIso, lorentzAction_mapIso] rfl lemma mulS_symm (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (x : X) (y : Y) (h : T.color x = τ (S.color y)) : mapIso d (Equiv.sumComm _ _) (mulS T S x y h) = mulS S T y x (color_eq_dual_symm h) := by rw [mulS, mulS, mul_symm] /-- An equivalence of types associated with multiplying two consecutive indices, with the second index appearing on the left. -/ def mulSSplitLeft {y y' : Y} (hy : y ≠ y') (z : Z) : {yz // yz ≠ (Sum.inl ⟨y, hy⟩ : {y'' // y'' ≠ y'} ⊕ {z' // z' ≠ z})} ≃ {y'' // y'' ≠ y' ∧ y'' ≠ y} ⊕ {z' // z' ≠ z} := Equiv.subtypeSum.trans <| Equiv.sumCongr ( (Equiv.subtypeEquivRight (fun a => by obtain ⟨a, p⟩ := a; simp only [ne_eq, Sum.inl.injEq, Subtype.mk.injEq])).trans (Equiv.subtypeSubtypeEquivSubtypeInter _ _)) <| Equiv.subtypeUnivEquiv (fun a => Sum.inr_ne_inl) /-- An equivalence of types associated with multiplying two consecutive indices with the second index appearing on the right. -/ def mulSSplitRight {y y' : Y} (hy : y ≠ y') (z : Z) : {yz // yz ≠ (Sum.inr ⟨y', hy.symm⟩ : {z' // z' ≠ z} ⊕ {y'' // y'' ≠ y})} ≃ {z' // z' ≠ z} ⊕ {y'' // y'' ≠ y' ∧ y'' ≠ y} := Equiv.subtypeSum.trans <| Equiv.sumCongr (Equiv.subtypeUnivEquiv (fun a => Sum.inl_ne_inr)) <| (Equiv.subtypeEquivRight (fun a => by obtain ⟨a, p⟩ := a; simp only [ne_eq, Sum.inr.injEq, Subtype.mk.injEq])).trans <| ((Equiv.subtypeSubtypeEquivSubtypeInter _ _).trans (Equiv.subtypeEquivRight (fun y'' => And.comm))) /-- An equivalence of types associated with the associativity property of multiplication. -/ def mulSAssocIso (x : X) {y y' : Y} (hy : y ≠ y') (z : Z) : {x' // x' ≠ x} ⊕ {yz // yz ≠ (Sum.inl ⟨y, hy⟩ : {y'' // y'' ≠ y'} ⊕ {z' // z' ≠ z})} ≃ {xy // xy ≠ (Sum.inr ⟨y', hy.symm⟩ : {x' // x' ≠ x} ⊕ {y'' // y'' ≠ y})} ⊕ {z' // z' ≠ z} := (Equiv.sumCongr (Equiv.refl _) (mulSSplitLeft hy z)).trans <| (Equiv.sumAssoc _ _ _).symm.trans <| (Equiv.sumCongr (mulSSplitRight hy x).symm (Equiv.refl _)) lemma mulS_assoc_color {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {U : RealLorentzTensor d Z} {x : X} {y y' : Y} (hy : y ≠ y') {z : Z} (h : T.color x = τ (S.color y)) (h' : S.color y' = τ (U.color z)) : (mulS (mulS T S x y h) U (Sum.inr ⟨y', hy.symm⟩) z h').color = (mapIso d (mulSAssocIso x hy z) (mulS T (mulS S U y' z h') x (Sum.inl ⟨y, hy⟩) h)).color := by funext a match a with | .inl ⟨.inl _, _⟩ => rfl | .inl ⟨.inr _, _⟩ => rfl | .inr _ => rfl /-- An equivalence of index values associated with the associativity property of multiplication. -/ def mulSAssocIndexValue {T : RealLorentzTensor d X} {S : RealLorentzTensor d Y} {U : RealLorentzTensor d Z} {x : X} {y y' : Y} (hy : y ≠ y') {z : Z} (h : T.color x = τ (S.color y)) (h' : S.color y' = τ (U.color z)) : IndexValue d ((T.mulS S x y h).mulS U (Sum.inr ⟨y', hy.symm⟩) z h').color ≃ IndexValue d (T.mulS (S.mulS U y' z h') x (Sum.inl ⟨y, hy⟩) h).color := indexValueIso d (mulSAssocIso x hy z).symm (mulS_assoc_color hy h h') /-- Multiplication of indices is associative, up to a `mapIso` equivalence. -/ lemma mulS_assoc (T : RealLorentzTensor d X) (S : RealLorentzTensor d Y) (U : RealLorentzTensor d Z) (x : X) (y y' : Y) (hy : y ≠ y') (z : Z) (h : T.color x = τ (S.color y)) (h' : S.color y' = τ (U.color z)) : mulS (mulS T S x y h) U (Sum.inr ⟨y', hy.symm⟩) z h' = mapIso d (mulSAssocIso x hy z) (mulS T (mulS S U y' z h') x (Sum.inl ⟨y, hy⟩) h) := by apply ext (mulS_assoc_color _ _ _) ?_ funext i trans ∑ a, (∑ b, T.coord (mulSFstArg (mulSFstArg i a) b) * S.coord (mulSSndArg (mulSFstArg i a) b h)) * U.coord (mulSSndArg i a h') rfl trans ∑ a, T.coord (mulSFstArg (mulSAssocIndexValue hy h h' i) a) * (∑ b, S.coord (mulSFstArg (mulSSndArg (mulSAssocIndexValue hy h h' i) a h) b) * U.coord (mulSSndArg (mulSSndArg (mulSAssocIndexValue hy h h' i) a h) b h')) swap rw [mapIso_apply_coord, mulS_coord_arg, indexValueIso_symm] rfl rw [Finset.sum_congr rfl (fun x _ => Finset.sum_mul _ _ _)] rw [Finset.sum_congr rfl (fun x _ => Finset.mul_sum _ _ _)] rw [Finset.sum_comm] refine Finset.sum_congr rfl (fun a _ => Finset.sum_congr rfl (fun b _ => ?_)) rw [mul_assoc] refine Mathlib.Tactic.Ring.mul_congr rfl (Mathlib.Tactic.Ring.mul_congr ?_ rfl rfl) rfl apply congrArg funext c by_cases hcy : c = y · subst hcy rw [mulSSndArg_on_mem, mulSFstArg_on_not_mem, mulSSndArg_on_mem] rfl · by_cases hcy' : c = y' · subst hcy' rw [mulSFstArg_on_mem, mulSSndArg_on_not_mem, mulSFstArg_on_mem] · rw [mulSFstArg_on_not_mem, mulSSndArg_on_not_mem, mulSSndArg_on_not_mem, mulSFstArg_on_not_mem] rw [mulSAssocIndexValue, indexValueIso_eq_symm, indexValueIso_symm_apply'] simp only [ne_eq, Function.comp_apply, Equiv.symm_symm_apply, mulS_color, Sum.elim_inr, colorsIndexCast, Equiv.cast_refl, Equiv.refl_symm] erw [Equiv.refl_apply] rfl exact hcy' simpa using hcy end RealLorentzTensor