/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.StandardModel.HiggsBoson.Basic import Mathlib.RepresentationTheory.Basic import HepLean.StandardModel.Basic import HepLean.StandardModel.Representations import Mathlib.Analysis.InnerProductSpace.Adjoint /-! # The action of the gauge group on the Higgs field -/ /-! TODO: Currently this only contains the action of the global gauge group. Generalize. -/ noncomputable section namespace StandardModel namespace HiggsVec open Manifold open Matrix open Complex open ComplexConjugate /-! ## The representation of the gauge group on the Higgs vector space -/ /-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/ @[simps!] noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ where toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1 map_mul' := by intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩ change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _ rw [repU1.map_mul, fundamentalSU2.map_mul, mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute] repeat rw [mul_assoc] map_one' := by simp /-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/ noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where toFun g := LinearMap.toContinuousLinearMap $ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g map_mul' g h := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis /-- `matrixToLin` commutes with the `star` operation. -/ lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) : matrixToLin (star g) = star (matrixToLin g) := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) : matrixToLin g ∈ unitary (HiggsVec →L[ℂ] HiggsVec) := by rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul, mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one] exact Prod.mk_eq_one.mp rfl /-- The natural homomorphism from unitary `2×2` complex matrices to unitary transformations of `higgsVec`. -/ noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (HiggsVec →L[ℂ] HiggsVec) where toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩ map_mul' g h := by simp map_one' := by simp /-- The inclusion of unitary transformations on `higgsVec` into all linear transformations. -/ @[simps!] def unitToLinear : unitary (HiggsVec →L[ℂ] HiggsVec) →* HiggsVec →ₗ[ℂ] HiggsVec := DistribMulAction.toModuleEnd ℂ HiggsVec /-- The representation of the gauge group acting on `higgsVec`. -/ @[simps!] def rep : Representation ℂ GaugeGroup HiggsVec := unitToLinear.comp (unitaryToLin.comp higgsRepUnitary) lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) : (higgsRepUnitary g).1 *ᵥ φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := by simp [higgsRepUnitary_apply_coe, smul_mulVec_assoc] lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) := higgsRepUnitary_mul g φ /-! # Gauge freedom -/ /-- Given a Higgs vector, a rotation matrix which puts the first component of the vector to zero, and the second component to a real -/ def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ := ![![φ 1 /‖φ‖, - φ 0 /‖φ‖], ![conj (φ 0) / ‖φ‖, conj (φ 1) / ‖φ‖]] lemma rotateMatrix_star (φ : HiggsVec) : star φ.rotateMatrix = ![![conj (φ 1) /‖φ‖, φ 0 /‖φ‖], ![- conj (φ 0) / ‖φ‖, φ 1 / ‖φ‖]] := by simp_rw [star, rotateMatrix, conjTranspose] ext i j fin_cases i <;> fin_cases j <;> simp [conj_ofReal] lemma rotateMatrix_det {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ).det = 1 := by have h1 : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ) field_simp [rotateMatrix, det_fin_two] rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq] simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add, Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm] lemma rotateMatrix_unitary {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ) ∈ unitaryGroup (Fin 2) ℂ := by rw [mem_unitaryGroup_iff', rotateMatrix_star, rotateMatrix] erw [mul_fin_two, one_fin_two] have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ) ext i j fin_cases i <;> fin_cases j <;> field_simp <;> rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq] · simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add, Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm, add_comm] · ring_nf · ring_nf · simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add, Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm] lemma rotateMatrix_specialUnitary {φ : HiggsVec} (hφ : φ ≠ 0) : (rotateMatrix φ) ∈ specialUnitaryGroup (Fin 2) ℂ := mem_specialUnitaryGroup_iff.mpr ⟨rotateMatrix_unitary hφ, rotateMatrix_det hφ⟩ /-- Given a Higgs vector, an element of the gauge group which puts the first component of the vector to zero, and the second component to a real number. -/ def rotateGuageGroup {φ : HiggsVec} (hφ : φ ≠ 0) : GaugeGroup := ⟨1, ⟨(rotateMatrix φ), rotateMatrix_specialUnitary hφ⟩, 1⟩ lemma rotateGuageGroup_apply {φ : HiggsVec} (hφ : φ ≠ 0) : rep (rotateGuageGroup hφ) φ = ![0, Complex.ofReal ‖φ‖] := by rw [rep_apply] simp only [rotateGuageGroup, rotateMatrix, one_pow, one_smul, Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe] ext i fin_cases i · simp only [mulVec, Fin.zero_eta, Fin.isValue, cons_val', empty_val', cons_val_fin_one, cons_val_zero, cons_dotProduct, vecHead, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero] ring_nf · simp only [Fin.mk_one, Fin.isValue, cons_val_one, head_cons, mulVec, Fin.isValue, cons_val', empty_val', cons_val_fin_one, vecHead, cons_dotProduct, vecTail, Nat.succ_eq_add_one, Nat.reduceAdd, Function.comp_apply, Fin.succ_zero_eq_one, dotProduct_empty, add_zero] have : (‖φ‖ : ℂ) ≠ 0 := ofReal_inj.mp.mt (norm_ne_zero_iff.mpr hφ) field_simp rw [← ofReal_mul, ← sq, ← @real_inner_self_eq_norm_sq] simp [PiLp.inner_apply, Complex.inner, neg_mul, sub_neg_eq_add, Fin.sum_univ_two, ofReal_add, ofReal_mul, mul_conj, mul_comm] theorem rotate_fst_zero_snd_real (φ : HiggsVec) : ∃ (g : GaugeGroup), rep g φ = ![0, Complex.ofReal ‖φ‖] := by by_cases h : φ = 0 · use ⟨1, 1, 1⟩ simp only [Prod.mk_one_one, _root_.map_one, h, map_zero, Nat.succ_eq_add_one, Nat.reduceAdd, norm_zero] ext i fin_cases i <;> rfl · use rotateGuageGroup h exact rotateGuageGroup_apply h theorem rotate_fst_real_snd_zero (φ : HiggsVec) : ∃ (g : GaugeGroup), rep g φ = ![Complex.ofReal ‖φ‖, 0] := by obtain ⟨g, h⟩ := rotate_fst_zero_snd_real φ let P : GaugeGroup := ⟨1, ⟨!![0, 1; -1, 0], by rw [mem_specialUnitaryGroup_iff] apply And.intro · rw [mem_unitaryGroup_iff, star_eq_conjTranspose] ext i j rw [Matrix.mul_apply, Fin.sum_univ_two] fin_cases i <;> fin_cases j <;> simp · simp [det_fin_two]⟩, 1⟩ use P * g rw [rep.map_mul] change rep P (rep g φ) = _ rw [h, rep_apply] simp only [one_pow, Nat.succ_eq_add_one, Nat.reduceAdd, ofReal_eq_coe, mulVec_cons, zero_smul, coe_smul, mulVec_empty, add_zero, zero_add, one_smul] funext i fin_cases i · simp only [Fin.zero_eta, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_zero, tail_cons, head_cons, real_smul, mul_one] · simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons, tail_cons, smul_zero] informal_lemma stablity_group where physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force." math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`, for non-zero `‖φ‖` is the `SU(3) x U(1)` subgroup of `gaugeGroup := SU(3) x SU(2) x U(1)` with the embedding given by `(g, e^{i θ}) ↦ (g, diag (e ^ {3 * i θ}, e ^ {- 3 * i θ}), e^{i θ})`." deps :≈ [`StandardModel.HiggsVec, `StandardModel.HiggsVec.rep] end HiggsVec /-! TODO: Define the global gauge action on HiggsField. -/ /-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/ /-! TODO: Prove invariance of potential under global gauge action. -/ end StandardModel end