/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.MinkowskiMetric import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup /-! # Spacetime as a self-adjoint matrix There is a linear equivalence between the vector space of space-time points and the vector space of 2×2-complex self-adjoint matrices. In this file we define this linear equivalence in `toSelfAdjointMatrix`. ## TODO If possible generalize to arbitrary dimensions. -/ namespace SpaceTime open Matrix open MatrixGroups open Complex /-- A 2×2-complex matrix formed from a space-time point. -/ @[simp] def toMatrix (x : LorentzVector 3) : Matrix (Fin 2) (Fin 2) ℂ := !![x.time + x.space 2, x.space 0 - x.space 1 * I; x.space 0 + x.space 1 * I, x.time - x.space 2] /-- The matrix `x.toMatrix` for `x ∈ spaceTime` is self adjoint. -/ lemma toMatrix_isSelfAdjoint (x : LorentzVector 3) : IsSelfAdjoint (toMatrix x) := by rw [isSelfAdjoint_iff, star_eq_conjTranspose, ← Matrix.ext_iff] intro i j fin_cases i <;> fin_cases j <;> simp [toMatrix, conj_ofReal] rfl /-- A self-adjoint matrix formed from a space-time point. -/ @[simps!] def toSelfAdjointMatrix' (x : LorentzVector 3) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) := ⟨toMatrix x, toMatrix_isSelfAdjoint x⟩ /-- A self-adjoint matrix formed from a space-time point. -/ @[simp] noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : LorentzVector 3 := fun i => match i with | Sum.inl 0 => 1/2 * (x.1 0 0 + x.1 1 1).re | Sum.inr 0 => (x.1 1 0).re | Sum.inr 1 => (x.1 1 0).im | Sum.inr 2 => 1/2 * (x.1 0 0 - x.1 1 1).re /-- The linear equivalence between the vector-space `spaceTime` and self-adjoint 2×2-complex matrices. -/ noncomputable def toSelfAdjointMatrix : LorentzVector 3 ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where toFun := toSelfAdjointMatrix' invFun := fromSelfAdjointMatrix' left_inv x := by funext i match i with | Sum.inl 0 => simp [fromSelfAdjointMatrix', toSelfAdjointMatrix', toMatrix, toMatrix_isSelfAdjoint] ring_nf | Sum.inr 0 => simp [fromSelfAdjointMatrix', toSelfAdjointMatrix', toMatrix, toMatrix_isSelfAdjoint] | Sum.inr 1 => simp [fromSelfAdjointMatrix', toSelfAdjointMatrix', toMatrix, toMatrix_isSelfAdjoint] | Sum.inr 2 => simp [fromSelfAdjointMatrix', toSelfAdjointMatrix', toMatrix, toMatrix_isSelfAdjoint] ring right_inv x := by simp only [toSelfAdjointMatrix', toMatrix, LorentzVector.time, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, LorentzVector.space, Function.comp_apply, sub_re, ofReal_sub, re_add_im] ext i j fin_cases i <;> fin_cases j <;> field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal] exact conj_eq_iff_re.mp (congrArg (fun M => M 0 0) $ selfAdjoint.mem_iff.mp x.2 ) have h01 := congrArg (fun M => M 0 1) $ selfAdjoint.mem_iff.mp x.2 simp only [Fin.isValue, star_apply, RCLike.star_def] at h01 rw [← h01, RCLike.conj_eq_re_sub_im] rfl exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 ) map_add' x y := by ext i j : 2 simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val', cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply] fin_cases i <;> fin_cases j · rw [show (x + y) (Sum.inl 0) = x (Sum.inl 0) + y (Sum.inl 0) from rfl] rw [show (x + y) (Sum.inr 2) = x (Sum.inr 2) + y (Sum.inr 2) from rfl] simp only [Fin.isValue, ofReal_add, Fin.zero_eta, cons_val_zero] ring · rw [show (x + y) (Sum.inr 0) = x (Sum.inr 0) + y (Sum.inr 0) from rfl] rw [show (x + y) (Sum.inr 1) = x (Sum.inr 1) + y (Sum.inr 1) from rfl] simp only [Fin.isValue, ofReal_add, Fin.mk_one, cons_val_one, head_cons, Fin.zero_eta, cons_val_zero] ring · rw [show (x + y) (Sum.inr 0) = x (Sum.inr 0) + y (Sum.inr 0) from rfl] rw [show (x + y) (Sum.inr 1) = x (Sum.inr 1) + y (Sum.inr 1) from rfl] simp only [Fin.isValue, ofReal_add, Fin.zero_eta, cons_val_zero, Fin.mk_one, cons_val_one, head_fin_const] ring · rw [show (x + y) (Sum.inl 0) = x (Sum.inl 0) + y (Sum.inl 0) from rfl] rw [show (x + y) (Sum.inr 2) = x (Sum.inr 2) + y (Sum.inr 2) from rfl] simp only [Fin.isValue, ofReal_add, Fin.mk_one, cons_val_one, head_cons, head_fin_const] ring map_smul' r x := by ext i j : 2 simp only [toSelfAdjointMatrix'_coe, Fin.isValue, of_apply, cons_val', empty_val', cons_val_fin_one, RingHom.id_apply, selfAdjoint.val_smul, smul_apply, real_smul] fin_cases i <;> fin_cases j · rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl] rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl] simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero] ring · rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl] rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl] simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, Fin.zero_eta, cons_val_zero] ring · rw [show (r • x) (Sum.inr 0) = r * x (Sum.inr 0) from rfl] rw [show (r • x) (Sum.inr 1) = r * x (Sum.inr 1) from rfl] simp only [Fin.isValue, ofReal_mul, Fin.zero_eta, cons_val_zero, Fin.mk_one, cons_val_one, head_fin_const] ring · rw [show (r • x) (Sum.inl 0) = r * x (Sum.inl 0) from rfl] rw [show (r • x) (Sum.inr 2) = r * x (Sum.inr 2) from rfl] simp only [Fin.isValue, ofReal_mul, Fin.mk_one, cons_val_one, head_cons, head_fin_const] ring open minkowskiMetric in lemma det_eq_ηLin (x : LorentzVector 3) : det (toSelfAdjointMatrix x).1 = ⟪x, x⟫ₘ := by simp only [toSelfAdjointMatrix, LinearEquiv.coe_mk, toSelfAdjointMatrix'_coe, Fin.isValue, det_fin_two_of, eq_time_minus_inner_prod, LorentzVector.time, LorentzVector.space, PiLp.inner_apply, Function.comp_apply, RCLike.inner_apply, conj_trivial, Fin.sum_univ_three, ofReal_sub, ofReal_mul, ofReal_add] ring_nf simp only [Fin.isValue, I_sq, mul_neg, mul_one] ring end SpaceTime