/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzGroup.Basic import Mathlib.RepresentationTheory.Basic /-! # The group SL(2, ℂ) and it's relation to the Lorentz group The aim of this file is to give the relationship between `SL(2, ℂ)` and the Lorentz group. -/ namespace SpaceTime open Matrix open MatrixGroups open Complex namespace SL2C open SpaceTime noncomputable section /-! ## Representation of SL(2, ℂ) on spacetime Through the correspondence between spacetime and self-adjoint matrices, we can define a representation a representation of `SL(2, ℂ)` on spacetime. -/ /-- Given an element `M ∈ SL(2, ℂ)` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` to itself defined by `A ↦ M * A * Mᴴ`. -/ @[simps!] def toLinearMapSelfAdjointMatrix (M : SL(2, ℂ)) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) →ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M, by noncomm_ring [selfAdjoint.mem_iff, star_eq_conjTranspose, conjTranspose_mul, conjTranspose_conjTranspose, (star_eq_conjTranspose A.1).symm.trans $ selfAdjoint.mem_iff.mp A.2]⟩ map_add' A B := by noncomm_ring [AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, AddSubmonoid.mk_add_mk, Subtype.mk.injEq] map_smul' r A := by noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, RingHom.id_apply] /-- The representation of `SL(2, ℂ)` on `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` given by `M A ↦ M * A * Mᴴ`. -/ @[simps!] def repSelfAdjointMatrix : Representation ℝ SL(2, ℂ) $ selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where toFun := toLinearMapSelfAdjointMatrix map_one' := by noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_one, one_mul, conjTranspose_one, mul_one, Subtype.coe_eta] map_mul' M N := by ext x i j : 3 noncomm_ring [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_mul, mul_assoc, conjTranspose_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply] /-- The representation of `SL(2, ℂ)` on `spaceTime` obtained from `toSelfAdjointMatrix` and `repSelfAdjointMatrix`. -/ def repLorentzVector : Representation ℝ SL(2, ℂ) (LorentzVector 3) where toFun M := toSelfAdjointMatrix.symm.comp ((repSelfAdjointMatrix M).comp toSelfAdjointMatrix.toLinearMap) map_one' := by ext simp map_mul' M N := by ext x : 3 simp /-! ## Homomorphism to the Lorentz group There is a group homomorphism from `SL(2, ℂ)` to the Lorentz group `𝓛`. The purpose of this section is to define this homomorphism. In the next section we will restrict this homomorphism to the restricted Lorentz group. -/ lemma iff_det_selfAdjoint (Λ : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ): Λ ∈ LorentzGroup 3 ↔ ∀ (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)), det ((toSelfAdjointMatrix ∘ toLin LorentzVector.stdBasis LorentzVector.stdBasis Λ ∘ toSelfAdjointMatrix.symm) x).1 = det x.1 := by rw [LorentzGroup.mem_iff_norm] apply Iff.intro intro h x have h1 := congrArg ofReal $ h (toSelfAdjointMatrix.symm x) simpa [← det_eq_ηLin] using h1 intro h x have h1 := h (toSelfAdjointMatrix x) simpa [det_eq_ηLin] using h1 /-- Given an element `M ∈ SL(2, ℂ)` the corresponding element of the Lorentz group. -/ @[simps!] def toLorentzGroupElem (M : SL(2, ℂ)) : LorentzGroup 3 := ⟨LinearMap.toMatrix LorentzVector.stdBasis LorentzVector.stdBasis (repLorentzVector M) , by simp [repLorentzVector, iff_det_selfAdjoint]⟩ /-- The group homomorphism from ` SL(2, ℂ)` to the Lorentz group `𝓛`. -/ @[simps!] def toLorentzGroup : SL(2, ℂ) →* LorentzGroup 3 where toFun := toLorentzGroupElem map_one' := by simp only [toLorentzGroupElem, _root_.map_one, LinearMap.toMatrix_one] rfl map_mul' M N := by apply Subtype.eq simp only [toLorentzGroupElem, _root_.map_mul, LinearMap.toMatrix_mul, lorentzGroupIsGroup_mul_coe] /-! ## Homomorphism to the restricted Lorentz group The homomorphism `toLorentzGroup` restricts to a homomorphism to the restricted Lorentz group. In this section we will define this homomorphism. ### TODO Complete this section. -/ end end SL2C end SpaceTime