/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.OverColor.Iso import HepLean.Tensors.OverColor.Discrete import HepLean.Tensors.OverColor.Lift import Mathlib.CategoryTheory.Monoidal.NaturalTransformation /-! # Tensor species and trees ## Tensor species - A tensor species is a structure including all of the ingredients needed to define a type of tensor. - Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and Einstien tensors. - Tensor species are built upon symmetric monoidal categories. ## Trees - Tensor trees provide an abstract way to represent tensor expressions. - Their nodes are either tensors or operations between tensors. - Every tensor tree has associated with an underlying tensor. - This is not a one-to-one correspondence. Lots tensor trees represent the same tensor. In the same way that lots of tensor expressions represent the same tensor. - Define a sub-tensor tree as a node of a tensor tree and all child nodes thereof. One can replace sub-tensor tree with another tensor tree which has the same underlying tensor without changing the underlying tensor of the parent tensor tree. These appear as the e.g. the lemmas `contr_tensor_eq` in what follows. -/ open IndexNotation open CategoryTheory open MonoidalCategory /-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors, complex Lorentz tensors. -/ structure TensorSpecies where /-- The colors of indices e.g. up or down. -/ C : Type /-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/ G : Type /-- An instance of `G` as a group. -/ G_group : Group G /-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/ k : Type /-- An instance of `k` as a commutative ring. -/ k_commRing : CommRing k /-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors `X → C`. -/ FDiscrete : Discrete C ⥤ Rep k G /-- A map from `C` to `C`. An involution. -/ τ : C → C /-- The condition that `τ` is an involution. -/ τ_involution : Function.Involutive τ /-- The natural transformation describing contraction. -/ contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G) /-- The natural transformation describing the metric. -/ metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete /-- The natural transformation describing the unit. -/ unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ /-- A specification of the dimension of each color in C. This will be used for explicit evaluation of tensors. -/ repDim : C → ℕ /-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/ repDim_neZero (c : C) : NeZero (repDim c) /-- A basis for each Module, determined by the evaluation map. -/ basis : (c : C) → Basis (Fin (repDim c)) k (FDiscrete.obj (Discrete.mk c)).V /-- Contraction is symmetric with respect to duals. -/ contr_tmul_symm (c : C) (x : FDiscrete.obj (Discrete.mk c)) (y : FDiscrete.obj (Discrete.mk (τ c))) : (contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom (y ⊗ₜ (FDiscrete.map (Discrete.eqToHom (τ_involution c).symm)).hom x) /-- Contraction with unit leaves invariant. -/ contr_unit (c : C) (x : FDiscrete.obj (Discrete.mk (c))) : (λ_ (FDiscrete.obj (Discrete.mk (c)))).hom.hom (((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (c)))).hom ((α_ _ _ (FDiscrete.obj (Discrete.mk (c)))).inv.hom (x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x /-- The unit is symmetric. -/ unit_symm (c : C) : ((unit.app (Discrete.mk c)).hom (1 : k)) = ((FDiscrete.obj (Discrete.mk (τ (c)))) ◁ (FDiscrete.map (Discrete.eqToHom (τ_involution c)))).hom ((β_ (FDiscrete.obj (Discrete.mk (τ (τ c)))) (FDiscrete.obj (Discrete.mk (τ (c))))).hom.hom ((unit.app (Discrete.mk (τ c))).hom (1 : k))) /-- On contracting metrics we get back the unit. -/ contr_metric (c : C) : (β_ (FDiscrete.obj (Discrete.mk c)) (FDiscrete.obj (Discrete.mk (τ c)))).hom.hom (((FDiscrete.obj (Discrete.mk c)) ◁ (λ_ (FDiscrete.obj (Discrete.mk (τ c)))).hom).hom (((FDiscrete.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷ (FDiscrete.obj (Discrete.mk (τ c))))).hom (((FDiscrete.obj (Discrete.mk c)) ◁ (α_ (FDiscrete.obj (Discrete.mk (c))) (FDiscrete.obj (Discrete.mk (τ c))) (FDiscrete.obj (Discrete.mk (τ c)))).inv).hom ((α_ (FDiscrete.obj (Discrete.mk (c))) (FDiscrete.obj (Discrete.mk (c))) (FDiscrete.obj (Discrete.mk (τ c)) ⊗ FDiscrete.obj (Discrete.mk (τ c)))).hom.hom ((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k] (metric.app (Discrete.mk (τ c))).hom (1 : k)))))) = (unit.app (Discrete.mk c)).hom (1 : k) noncomputable section namespace TensorSpecies open OverColor variable (S : TensorSpecies) instance : CommRing S.k := S.k_commRing instance : Group S.G := S.G_group instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c /-- The lift of the functor `S.F` to a monoidal functor. -/ def F : BraidedFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete /- The definition of `F` as a lemma. -/ lemma F_def : F S = (OverColor.lift).obj S.FDiscrete := rfl lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) = S.τ (c ((Hom.toEquiv σ).symm i)) := by have h1 := Hom.toEquiv_comp_apply σ simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1 rw [h1, h1] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply] rw [← h] congr simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom, HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk] erw [Equiv.apply_symm_apply] rw [HepLean.Fin.succsAbove_predAboveI] erw [Equiv.apply_symm_apply] simp only [Nat.succ_eq_add_one, ne_eq] erw [Equiv.apply_eq_iff_eq] exact (Fin.succAbove_ne i j).symm /-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo` under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/ def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅ (OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans apply (S.F.μIso _ _).symm.trans apply tensorIso ?_ ?_ · symm apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x rfl · symm apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x simp [h] lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : S.FDiscrete.obj { as := c i }) (y : S.FDiscrete.obj { as := S.τ (c i) }) : (S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) = PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map (eqToHom (by simp [h]))).hom y) := by simp only [Nat.succ_eq_add_one, contrFin1Fin1, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, Iso.trans_symm, Iso.symm_symm_eq, Iso.trans_inv, tensorIso_inv, Iso.symm_inv, Functor.mapIso_hom, tensor_comp, MonoidalFunctor.μIso_hom, Category.assoc, LaxMonoidalFunctor.μ_natural, Functor.mapIso_inv, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, ModuleCat.coe_comp, Functor.id_obj, mk_hom, Fin.isValue] change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((S.F.μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom ((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k] ((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _ simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, forgetLiftApp, Action.mkIso_inv_hom, LinearEquiv.toModuleIso_inv, Fin.isValue] erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom (((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun _ => c i) (OverColor.mk fun _ => S.τ (c i))).hom (((PiTensorProduct.tprod S.k) fun _ => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun _ => y))) = _ rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((PiTensorProduct.tprod S.k) _)) = _ rw [OverColor.lift.map_tprod S.FDiscrete] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((PiTensorProduct.tprod S.k _)) = _ rw [OverColor.lift.map_tprod S.FDiscrete] apply congrArg funext r match r with | Sum.inl 0 => simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm, instMonoidalCategoryStruct_tensorObj_hom, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor] simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl | Sum.inr 0 => simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_inv_homToEquiv, Equiv.refl_symm, instMonoidalCategoryStruct_tensorObj_hom, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, lift.discreteSumEquiv, Sum.elim_inl, Sum.elim_inr, HepLean.PiTensorProduct.elimPureTensor, LinearEquiv.ofLinear_apply] rfl lemma contrFin1Fin1_hom_hom_tprod {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : (k : Fin 1 ⊕ Fin 1) → (S.FDiscrete.obj { as := (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).hom k })) : (S.contrFin1Fin1 c i j h).hom.hom (PiTensorProduct.tprod S.k x) = x (Sum.inl 0) ⊗ₜ[S.k] ((S.FDiscrete.map (eqToHom (by simp [h]))).hom (x (Sum.inr 0))) := by change ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).hom _ = _ trans ((Action.forget _ _).mapIso (S.contrFin1Fin1 c i j h)).toLinearEquiv (PiTensorProduct.tprod S.k x) · rfl erw [← LinearEquiv.eq_symm_apply] erw [contrFin1Fin1_inv_tmul] congr funext i match i with | Sum.inl 0 => rfl | Sum.inr 0 => simp only [Nat.succ_eq_add_one, Fin.isValue, mk_hom, Function.comp_apply, Discrete.functor_obj_eq_as] change _ = ((S.FDiscrete.map (eqToHom _)) ≫ (S.FDiscrete.map (eqToHom _))).hom (x (Sum.inr 0)) rw [← Functor.map_comp] simp exact h /-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and a `j` in `Fin n.succ` allowing us to undertake contraction. -/ def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj (Discrete.mk (c i))) ⊗ (OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <| (S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <| (S.F.μIso _ _).symm.trans <| by refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp))) lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} : (S.contrIso c1 i j h).hom.hom = (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫ (S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫ ((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by rfl /-- `contrMap` is a function that takes a natural number `n`, a function `c` from `Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type `Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism corresponding to the contraction of the `i`th index with the `i.succAbove j` index. --/ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ⟶ S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.contrIso c i j h).hom ≫ (tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom /-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/ def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v /-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an element of the field. -/ def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k := (PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap lemma castFin0ToField_tprod {c : Fin 0 → S.C} (x : (i : Fin 0) → S.FDiscrete.obj (Discrete.mk (c i))) : castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe] erw [PiTensorProduct.isEmptyEquiv_apply_tprod] lemma contrMap_tprod {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : (i : Fin n.succ.succ) → S.FDiscrete.obj (Discrete.mk (c i))) : (S.contrMap c i j h).hom (PiTensorProduct.tprod S.k x) = (S.castToField ((S.contr.app (Discrete.mk (c i))).hom ((x i) ⊗ₜ[S.k] (S.FDiscrete.map (Discrete.eqToHom h)).hom (x (i.succAbove j)))) : S.k) • (PiTensorProduct.tprod S.k (fun k => x (i.succAbove (j.succAbove k))) : S.F.obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))) := by rw [contrMap, contrIso] simp only [Nat.succ_eq_add_one, S.F_def, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Monoidal.tensorUnit_obj, tensorHom_id, Category.assoc, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_whiskerRight_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp, Function.comp_apply, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as] change (λ_ ((lift.obj S.FDiscrete).obj _)).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) (((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom (((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ((PiTensorProduct.tprod S.k) x)))))) = _ rw [lift.map_tprod] change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) (((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ((PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FDiscrete _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm i_1))))))) = _ rw [lift.map_tprod] change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) (((S.contrFin1Fin1 c i j h).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ((PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm ((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm i_1)))))))) = _ rw [lift.μIso_inv_tprod] change (λ_ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)))).hom.hom (((S.contr.app { as := c i }).hom ▷ ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove))).V) ((TensorProduct.map (S.contrFin1Fin1 c i j h).hom.hom ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm ((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inl i_1)))))) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun i_1 => (lift.discreteFunctorMapEqIso S.FDiscrete _) ((lift.discreteFunctorMapEqIso S.FDiscrete _) (x ((Hom.toEquiv (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).symm ((Hom.toEquiv (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).symm (Sum.inr i_1)))))))) = _ rw [TensorProduct.map_tmul] rw [contrFin1Fin1_hom_hom_tprod] simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, mk_hom, Function.comp_apply, Discrete.functor_obj_eq_as, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm, Functor.id_obj, ModuleCat.MonoidalCategory.whiskerRight_apply] rw [Action.instMonoidalCategory_leftUnitor_hom_hom] simp only [Monoidal.tensorUnit_obj, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue, ModuleCat.MonoidalCategory.leftUnitor_hom_apply] congr 1 /- The contraction. -/ · simp only [Fin.isValue, castToField] congr 2 · simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl · simp only [Fin.isValue, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FDiscrete.map (eqToHom _)).hom (x (((HepLean.Fin.finExtractTwo i j)).symm ((Sum.inl (Sum.inr 0))))) = _ simp only [Nat.succ_eq_add_one, Fin.isValue] have h1' {a b d: Fin n.succ.succ} (hbd : b =d) (h : c d = S.τ (c a)) (h' : c b = S.τ (c a)) : (S.FDiscrete.map (Discrete.eqToHom (h))).hom (x d) = (S.FDiscrete.map (Discrete.eqToHom h')).hom (x b) := by subst hbd rfl refine h1' ?_ ?_ ?_ simp only [Nat.succ_eq_add_one, Fin.isValue, HepLean.Fin.finExtractTwo_symm_inl_inr_apply] simp [h] /- The tensor. -/ · erw [lift.map_tprod] apply congrArg funext d simp only [mk_hom, Function.comp_apply, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FDiscrete.map (eqToHom _)).hom ((x ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr (d))))) = _ simp only [Nat.succ_eq_add_one] have h1 : ((HepLean.Fin.finExtractTwo i j).symm (Sum.inr d)) = (i.succAbove (j.succAbove d)) := HepLean.Fin.finExtractTwo_symm_inr_apply i j d have h1' {a b : Fin n.succ.succ} (h : a = b) : (S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by subst h simp exact h1' h1 /-! ## Evalutation of indices. -/ /-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ` allowing us to undertake evaluation. -/ def evalIso {n : ℕ} (c : Fin n.succ → S.C) (i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FDiscrete.obj (Discrete.mk (c i))) ⊗ (OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)) := (S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <| (S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <| (S.F.μIso _ _).symm.trans <| tensorIso ((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans (OverColor.forgetLiftApp S.FDiscrete (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp))) lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) : (S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) = x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom, Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp, Function.comp_apply] change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom (((lift.obj S.FDiscrete).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom ((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.map_tprod] change (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FDiscrete (c i)).hom.hom ⊗ ((lift.obj S.FDiscrete).map (mkIso _).hom).hom) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FDiscrete).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom (((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.map_tprod] change ((TensorProduct.map (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FDiscrete (c i)).hom.hom) ((lift.obj S.FDiscrete).map (mkIso _).hom).hom)) (((lift.obj S.FDiscrete).μIso (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom ((((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.μIso_inv_tprod] rw [TensorProduct.map_tmul] erw [lift.map_tprod] simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm, LinearMap.coe_comp, Sum.elim_inr] congr 1 · change (forgetLiftApp S.FDiscrete (c i)).hom.hom (((lift.obj S.FDiscrete).map (mkIso _).hom).hom ((PiTensorProduct.tprod S.k) _)) = _ rw [lift.map_tprod] rw [forgetLiftApp_hom_hom_apply_eq] apply congrArg funext i match i with | (0 : Fin 1) => simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl · apply congrArg funext k simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FDiscrete.map (eqToHom _)).hom (x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _ have h1' {a b : Fin n.succ} (h : a = b) : (S.FDiscrete.map (eqToHom (by rw [h]))).hom (x a) = x b := by subst h simp refine h1' ?_ exact HepLean.Fin.finExtractOne_symm_inr_apply i k /-- The linear map giving the coordinate of a vector with respect to the given basis. Important Note: This is not a morphism in the category of representations. In general, it cannot be lifted thereto. -/ def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) : S.FDiscrete.obj { as := c i } →ₗ[S.k] S.k where toFun := fun v => (S.basis (c i)).repr v e map_add' := by simp map_smul' := by simp /-- The evaluation map, used to evaluate indices of tensors. Important Note: The evaluation map is in general, not equivariant with respect to group actions. It is a morphism in the underlying module category, not the category of representations. -/ def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) : (S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V := (S.evalIso c i).hom.hom ≫ ((Action.forgetMonoidal _ _).μIso _ _).inv ≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫ ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) (x : (i : Fin n.succ) → S.FDiscrete.obj (Discrete.mk (c i))) : (S.evalMap i e) (PiTensorProduct.tprod S.k x) = (((S.basis (c i)).repr (x i) e) : S.k) • (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by rw [evalMap] simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.coe_comp] erw [evalIso_tprod] change ((TensorProduct.lid S.k ↑((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove))).V)) (((TensorProduct.map (S.evalLinearMap i e) LinearMap.id)) (((Action.forgetMonoidal (ModuleCat S.k) (MonCat.of S.G)).μIso (S.FDiscrete.obj { as := c i }) ((lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove)))).inv (x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _ simp only [Nat.succ_eq_add_one, Action.forgetMonoidal_toLaxMonoidalFunctor_toFunctor, Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, MonoidalFunctor.μIso, Action.forgetMonoidal_toLaxMonoidalFunctor_μ, asIso_inv, IsIso.inv_id, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul, LinearMap.id_coe, id_eq, TensorProduct.lid_tmul] rfl end TensorSpecies /-- A syntax tree for tensor expressions. -/ inductive TensorTree (S : TensorSpecies) : {n : ℕ} → (Fin n → S.C) → Type where /-- A general tensor node. -/ | tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c /-- A node corresponding to the addition of two tensors. -/ | add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c /-- A node corresponding to the permutation of indices of a tensor. -/ | perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1 /-- A node corresponding to the product of two tensors. -/ | prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm) /-- A node correpsonding to the scalar multiple of a tensor by a element of the field. -/ | smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c /-- A node corresponding to negation of a tensor. -/ | neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c /-- A node corresponding to the contraction of indices of a tensor. -/ | contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) → (j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j) /-- A node correpsonding to the action of a group element on a tensor. -/ | action {n : ℕ} {c : Fin n → S.C} : S.G → TensorTree S c → TensorTree S c /-- A node corresponding to the evaluation of an index of a tensor. -/ | eval {n : ℕ} {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : ℕ) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i) namespace TensorTree variable {S : TensorSpecies} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c) open MonoidalCategory open TensorProduct /-! ## Composite nodes -/ /-- A node consisting of a single vector. -/ def vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] := perm (OverColor.mkIso (by ext x; fin_cases x; rfl)).hom (tensorNode ((OverColor.forgetLiftApp S.FDiscrete c).symm.hom.hom v)) /-- The node `vecNode` of a tensor tree, with all arguments explicit. -/ abbrev vecNodeE (S : TensorSpecies) (c1 : S.C) (v : (S.FDiscrete.obj (Discrete.mk c1)).V) : TensorTree S ![c1] := vecNode v /-- A node consisting of a two tensor. -/ def twoNode {c1 c2 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] := (tensorNode ((OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom t)) /-- The node `twoNode` of a tensor tree, with all arguments explicit. -/ abbrev twoNodeE (S : TensorSpecies) (c1 c2 : S.C) (v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] := twoNode v /-- A node consisting of a three tensor. -/ def threeNode {c1 c2 c3 : S.C} (t : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)).V) : TensorTree S ![c1, c2, c3] := (tensorNode ((OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom t)) /-- The node `threeNode` of a tensor tree, with all arguments explicit. -/ abbrev threeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C) (v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)).V) : TensorTree S ![c1, c2, c3] := threeNode v /-- A general constant node. -/ def constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) : TensorTree S c := tensorNode (T.hom (1 : S.k)) /-- A constant vector. -/ def constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] := vecNode (v.hom (1 : S.k)) /-- A constant two tensor (e.g. metric and unit). -/ def constTwoNode {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] := twoNode (v.hom (1 : S.k)) /-- The node `constTwoNode` of a tensor tree, with all arguments explicit. -/ abbrev constTwoNodeE (S : TensorSpecies) (c1 c2 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] := constTwoNode v /-- A constant three tensor (e.g. Pauli matrices). -/ def constThreeNode {c1 c2 c3 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] := threeNode (v.hom (1 : S.k)) /-- The node `constThreeNode` of a tensor tree, with all arguments explicit. -/ abbrev constThreeNodeE (S : TensorSpecies) (c1 c2 c3 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] := constThreeNode v /-! ## Other operations. -/ /-- The number of nodes in a tensor tree. -/ def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun | tensorNode _ => 1 | add t1 t2 => t1.size + t2.size + 1 | perm _ t => t.size + 1 | neg t => t.size + 1 | smul _ t => t.size + 1 | prod t1 t2 => t1.size + t2.size + 1 | contr _ _ _ t => t.size + 1 | eval _ _ t => t.size + 1 | action _ t => t.size + 1 noncomputable section /-- The underlying tensor a tensor tree corresponds to. -/ def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun | tensorNode t => t | add t1 t2 => t1.tensor + t2.tensor | perm σ t => (S.F.map σ).hom t.tensor | neg t => - t.tensor | smul a t => a • t.tensor | prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) | contr i j h t => (S.contrMap _ i j h).hom t.tensor | eval i e t => (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor | action g t => (S.F.obj (OverColor.mk _)).ρ g t.tensor /-- Takes a tensor tree based on `Fin 0`, into the field `S.k`. -/ def field {c : Fin 0 → S.C} (t : TensorTree S c) : S.k := S.castFin0ToField t.tensor /-! ## Tensor on different nodes. -/ @[simp] lemma tensorNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : (tensorNode T).tensor = T := rfl @[simp] lemma constTwoNode_tensor {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : (constTwoNode v).tensor = (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) := rfl @[simp] lemma constThreeNode_tensor {c1 c2 c3 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : (constThreeNode v).tensor = (OverColor.Discrete.tripleIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) := rfl lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1) (t2 : TensorTree S c2) : (prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : (perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) : (contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl lemma eval_tensor {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (t : TensorTree S c) : (eval i e t).tensor = (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor := rfl lemma smul_tensor {c : Fin n → S.C} (a : S.k) (T : TensorTree S c) : (smul a T).tensor = a • T.tensor:= rfl lemma action_tensor {c : Fin n → S.C} (g : S.G) (T : TensorTree S c) : (action g T).tensor = (S.F.obj (OverColor.mk c)).ρ g T.tensor := rfl /-! ## Equality of tensors and rewrites. -/ lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ} {h' : c (i.succAbove j) = S.τ (c i)} : (contr i j h' T1).tensor = (contr i j h' T2).tensor := by simp only [Nat.succ_eq_add_one, contr_tensor] rw [h] lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 T1' : TensorTree S c} { T2 : TensorTree S c1} (h : T1.tensor = T1'.tensor) : (prod T1 T2).tensor = (prod T1' T2).tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] rw [h] lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 : TensorTree S c} {T2 T2' : TensorTree S c1} (h : T2.tensor = T2'.tensor) : (prod T1 T2).tensor = (prod T1 T2').tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] rw [h] lemma perm_tensor_eq {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) : (perm σ T1).tensor = (perm σ T2).tensor := by simp only [perm_tensor] rw [h] lemma add_tensor_eq_fst {T1 T1' T2 : TensorTree S c} (h : T1.tensor = T1'.tensor) : (add T1 T2).tensor = (add T1' T2).tensor := by simp only [add_tensor] rw [h] lemma add_tensor_eq_snd {T1 T2 T2' : TensorTree S c} (h : T2.tensor = T2'.tensor) : (add T1 T2).tensor = (add T1 T2').tensor := by simp only [add_tensor] rw [h] lemma add_tensor_eq {T1 T1' T2 T2' : TensorTree S c} (h1 : T1.tensor = T1'.tensor) (h2 : T2.tensor = T2'.tensor) : (add T1 T2).tensor = (add T1' T2').tensor := by simp only [add_tensor] rw [h1, h2] lemma neg_tensor_eq {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) : (neg T1).tensor = (neg T2).tensor := by simp only [neg_tensor] rw [h] lemma smul_tensor_eq {T1 T2 : TensorTree S c} {a : S.k} (h : T1.tensor = T2.tensor) : (smul a T1).tensor = (smul a T2).tensor := by simp only [smul_tensor] rw [h] lemma action_tensor_eq {T1 T2 : TensorTree S c} {g : S.G} (h : T1.tensor = T2.tensor) : (action g T1).tensor = (action g T2).tensor := by simp only [action_tensor] rw [h] lemma smul_mul_eq {T1 : TensorTree S c} {a b : S.k} (h : a = b) : (smul a T1).tensor = (smul b T1).tensor := by rw [h] lemma eq_tensorNode_of_eq_tensor {T1 : TensorTree S c} {t : S.F.obj (OverColor.mk c)} (h : T1.tensor = t) : T1.tensor = (tensorNode t).tensor := by simpa using h /-! ## The zero tensor tree -/ /-- The zero tensor tree. -/ def zeroTree {n : ℕ} {c : Fin n → S.C} : TensorTree S c := tensorNode 0 @[simp] lemma zeroTree_tensor {n : ℕ} {c : Fin n → S.C} : (zeroTree (c := c)).tensor = 0 := by rfl lemma zero_smul {T1 : TensorTree S c} : (smul 0 T1).tensor = zeroTree.tensor := by simp only [smul_tensor, _root_.zero_smul, zeroTree_tensor] lemma smul_zero {a : S.k} : (smul a (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [smul_tensor, zeroTree_tensor, _root_.smul_zero] lemma zero_add {T1 : TensorTree S c} : (add zeroTree T1).tensor = T1.tensor := by simp only [add_tensor, zeroTree_tensor, _root_.zero_add] lemma add_zero {T1 : TensorTree S c} : (add T1 zeroTree).tensor = T1.tensor := by simp only [add_tensor, zeroTree_tensor, _root_.add_zero] lemma perm_zero {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (perm σ zeroTree).tensor = zeroTree.tensor := by simp only [perm_tensor, zeroTree_tensor, map_zero] lemma neg_zero : (neg (zeroTree (c := c))).tensor = zeroTree.tensor := by simp only [neg_tensor, zeroTree_tensor, _root_.neg_zero] lemma contr_zero {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} : (contr i j h zeroTree).tensor = zeroTree.tensor := by simp only [contr_tensor, zeroTree_tensor, map_zero] lemma zero_prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c1) : (prod (zeroTree (c := c)) t).tensor = zeroTree.tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, zero_tmul, map_zero] lemma prod_zero {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) : (prod t (zeroTree (c := c1))).tensor = zeroTree.tensor := by simp only [prod_tensor, Functor.id_obj, OverColor.mk_hom, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, zeroTree_tensor, tmul_zero, map_zero] /-- A structure containing a pair of indices (i, j) to be contracted in a tensor. This is used in some proofs of node identities for tensor trees. -/ structure ContrPair {n : ℕ} (c : Fin n.succ.succ → S.C) where /-- The first index in the pair, appearing on the left in the contraction node `contr i j h _`. -/ i : Fin n.succ.succ /-- The second index in the pair, appearing on the right in the contraction node `contr i j h _`. -/ j : Fin n.succ /-- A proof that the two indices can be contracted. -/ h : c (i.succAbove j) = S.τ (c i) namespace ContrPair variable {n : ℕ} {c : Fin n.succ.succ → S.C} (q q' : ContrPair c) lemma ext (hi : q.i = q'.i) (hj : q.j = q'.j) : q = q' := by cases q cases q' subst hi subst hj rfl /-- The contraction map for a pair of indices. -/ def contrMap := S.contrMap c q.i q.j q.h end ContrPair end end TensorTree end