/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.AnomalyCancellation.PureU1.Sort import HepLean.AnomalyCancellation.PureU1.BasisLinear import HepLean.AnomalyCancellation.PureU1.VectorLike import Mathlib.Logic.Equiv.Fin /-! # Basis of `LinSols` in the odd case We give a basis of `LinSols` in the odd case. This basis has the special property that splits into two planes on which every point is a solution to the ACCs. -/ universe v u open Nat open Finset open BigOperators namespace PureU1 variable {n : ℕ} namespace VectorLikeOddPlane lemma split_odd! (n : ℕ) : (1 + n) + n = 2 * n +1 := by omega lemma split_adda (n : ℕ) : ((1+n)+1) + n.succ = 2 * n.succ + 1 := by omega section theDeltas /-- A helper function for what follows. -/ def δ₁ (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.castAdd n (Fin.castAdd 1 j)) /-- A helper function for what follows. -/ def δ₂ (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.natAdd (n+1) j) /-- A helper function for what follows. -/ def δ₃ : Fin (2 * n + 1) := Fin.cast (split_odd n) (Fin.castAdd n (Fin.natAdd n 1)) /-- A helper function for what follows. -/ def δ!₁ (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd! n) (Fin.castAdd n (Fin.natAdd 1 j)) /-- A helper function for what follows. -/ def δ!₂ (j : Fin n) : Fin (2 * n + 1) := Fin.cast (split_odd! n) (Fin.natAdd (1 + n) j) /-- A helper function for what follows. -/ def δ!₃ : Fin (2 * n + 1) := Fin.cast (split_odd! n) (Fin.castAdd n (Fin.castAdd n 1)) /-- A helper function for what follows. -/ def δa₁ : Fin (2 * n.succ + 1) := Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.castAdd n 1))) /-- A helper function for what follows. -/ def δa₂ (j : Fin n) : Fin (2 * n.succ + 1) := Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.castAdd 1 (Fin.natAdd 1 j))) /-- A helper function for what follows. -/ def δa₃ : Fin (2 * n.succ + 1) := Fin.cast (split_adda n) (Fin.castAdd n.succ (Fin.natAdd (1+n) 1)) /-- A helper function for what follows. -/ def δa₄ (j : Fin n.succ) : Fin (2 * n.succ + 1) := Fin.cast (split_adda n) (Fin.natAdd ((1+n)+1) j) lemma δa₁_δ₁ : @δa₁ n = δ₁ 0 := by exact Fin.rev_inj.mp rfl lemma δa₁_δ!₃ : @δa₁ n = δ!₃ := by rfl lemma δa₂_δ₁ (j : Fin n) : δa₂ j = δ₁ j.succ := by rw [Fin.ext_iff] simp [δa₂, δ₁] omega lemma δa₂_δ!₁ (j : Fin n) : δa₂ j = δ!₁ j.castSucc := by rw [Fin.ext_iff] simp [δa₂, δ!₁] lemma δa₃_δ₃ : @δa₃ n = δ₃ := by rw [Fin.ext_iff] simp [δa₃, δ₃] omega lemma δa₃_δ!₁ : δa₃ = δ!₁ (Fin.last n) := by rfl lemma δa₄_δ₂ (j : Fin n.succ) : δa₄ j = δ₂ j := by rw [Fin.ext_iff] simp [δa₄, δ₂] omega lemma δa₄_δ!₂ (j : Fin n.succ) : δa₄ j = δ!₂ j := by rw [Fin.ext_iff] simp [δa₄, δ!₂] omega lemma δ₂_δ!₂ (j : Fin n) : δ₂ j = δ!₂ j := by rw [Fin.ext_iff] simp [δ₂, δ!₂] omega lemma sum_δ (S : Fin (2 * n + 1) → ℚ) : ∑ i, S i = S δ₃ + ∑ i : Fin n, ((S ∘ δ₁) i + (S ∘ δ₂) i) := by have h1 : ∑ i, S i = ∑ i : Fin (n + 1 + n), S (Fin.cast (split_odd n) i) := by rw [Finset.sum_equiv (Fin.castOrderIso (split_odd n)).symm.toEquiv] intro i simp only [mem_univ, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv] intro i simp rw [h1] rw [Fin.sum_univ_add, Fin.sum_univ_add] simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply] nth_rewrite 2 [add_comm] rw [add_assoc] rw [Finset.sum_add_distrib] rfl lemma sum_δ! (S : Fin (2 * n + 1) → ℚ) : ∑ i, S i = S δ!₃ + ∑ i : Fin n, ((S ∘ δ!₁) i + (S ∘ δ!₂) i) := by have h1 : ∑ i, S i = ∑ i : Fin ((1+n)+n), S (Fin.cast (split_odd! n) i) := by rw [Finset.sum_equiv (Fin.castOrderIso (split_odd! n)).symm.toEquiv] intro i simp only [mem_univ, Fin.castOrderIso, RelIso.coe_fn_toEquiv] intro i simp rw [h1] rw [Fin.sum_univ_add, Fin.sum_univ_add] simp only [univ_unique, Fin.default_eq_zero, Fin.isValue, sum_singleton, Function.comp_apply] rw [add_assoc] rw [Finset.sum_add_distrib] rfl end theDeltas section theBasisVectors /-- The first part of the basis as charge assignments. -/ def basisAsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges := fun i => if i = δ₁ j then 1 else if i = δ₂ j then - 1 else 0 /-- The second part of the basis as charge assignments. -/ def basis!AsCharges (j : Fin n) : (PureU1 (2 * n + 1)).Charges := fun i => if i = δ!₁ j then 1 else if i = δ!₂ j then - 1 else 0 lemma basis_on_δ₁_self (j : Fin n) : basisAsCharges j (δ₁ j) = 1 := by simp [basisAsCharges] lemma basis!_on_δ!₁_self (j : Fin n) : basis!AsCharges j (δ!₁ j) = 1 := by simp [basis!AsCharges] lemma basis_on_δ₁_other {k j : Fin n} (h : k ≠ j) : basisAsCharges k (δ₁ j) = 0 := by simp [basisAsCharges] simp [δ₁, δ₂] split rename_i h1 rw [Fin.ext_iff] at h1 simp_all rw [Fin.ext_iff] at h simp_all split rename_i h1 h2 simp_all rw [Fin.ext_iff] at h2 simp at h2 omega rfl lemma basis!_on_δ!₁_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (δ!₁ j) = 0 := by simp [basis!AsCharges] simp [δ!₁, δ!₂] split rename_i h1 rw [Fin.ext_iff] at h1 simp_all rw [Fin.ext_iff] at h simp_all split rename_i h1 h2 simp_all rw [Fin.ext_iff] at h2 simp at h2 omega rfl lemma basis_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ δ₁ k) (h2 : j ≠ δ₂ k) : basisAsCharges k j = 0 := by simp [basisAsCharges] simp_all only [ne_eq, ↓reduceIte] lemma basis!_on_other {k : Fin n} {j : Fin (2 * n + 1)} (h1 : j ≠ δ!₁ k) (h2 : j ≠ δ!₂ k) : basis!AsCharges k j = 0 := by simp [basis!AsCharges] simp_all only [ne_eq, ↓reduceIte] lemma basis_δ₂_eq_minus_δ₁ (j i : Fin n) : basisAsCharges j (δ₂ i) = - basisAsCharges j (δ₁ i) := by simp [basisAsCharges, δ₂, δ₁] split <;> split any_goals split any_goals split any_goals rfl all_goals rename_i h1 h2 all_goals rw [Fin.ext_iff] at h1 h2 all_goals simp_all all_goals rename_i h3 all_goals rw [Fin.ext_iff] at h3 all_goals simp_all all_goals omega lemma basis!_δ!₂_eq_minus_δ!₁ (j i : Fin n) : basis!AsCharges j (δ!₂ i) = - basis!AsCharges j (δ!₁ i) := by simp [basis!AsCharges, δ!₂, δ!₁] split <;> split any_goals split any_goals split any_goals rfl all_goals rename_i h1 h2 all_goals rw [Fin.ext_iff] at h1 h2 all_goals simp_all subst h1 exact Fin.elim0 i all_goals rename_i h3 all_goals rw [Fin.ext_iff] at h3 all_goals simp_all all_goals omega lemma basis_on_δ₂_self (j : Fin n) : basisAsCharges j (δ₂ j) = - 1 := by rw [basis_δ₂_eq_minus_δ₁, basis_on_δ₁_self] lemma basis!_on_δ!₂_self (j : Fin n) : basis!AsCharges j (δ!₂ j) = - 1 := by rw [basis!_δ!₂_eq_minus_δ!₁, basis!_on_δ!₁_self] lemma basis_on_δ₂_other {k j : Fin n} (h : k ≠ j) : basisAsCharges k (δ₂ j) = 0 := by rw [basis_δ₂_eq_minus_δ₁, basis_on_δ₁_other h] rfl lemma basis!_on_δ!₂_other {k j : Fin n} (h : k ≠ j) : basis!AsCharges k (δ!₂ j) = 0 := by rw [basis!_δ!₂_eq_minus_δ!₁, basis!_on_δ!₁_other h] rfl lemma basis_on_δ₃ (j : Fin n) : basisAsCharges j δ₃ = 0 := by simp [basisAsCharges] split <;> rename_i h rw [Fin.ext_iff] at h simp [δ₃, δ₁] at h omega split <;> rename_i h2 rw [Fin.ext_iff] at h2 simp [δ₃, δ₂] at h2 omega rfl lemma basis!_on_δ!₃ (j : Fin n) : basis!AsCharges j δ!₃ = 0 := by simp [basis!AsCharges] split <;> rename_i h rw [Fin.ext_iff] at h simp [δ!₃, δ!₁] at h omega split <;> rename_i h2 rw [Fin.ext_iff] at h2 simp [δ!₃, δ!₂] at h2 omega rfl lemma basis_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basisAsCharges j) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] erw [sum_δ] simp [basis_δ₂_eq_minus_δ₁, basis_on_δ₃] lemma basis!_linearACC (j : Fin n) : (accGrav (2 * n + 1)) (basis!AsCharges j) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_δ!, basis!_on_δ!₃] simp [basis!_δ!₂_eq_minus_δ!₁] /-- The first part of the basis as `LinSols`. -/ @[simps!] def basis (j : Fin n) : (PureU1 (2 * n + 1)).LinSols := ⟨basisAsCharges j, by intro i simp at i match i with | 0 => exact basis_linearACC j⟩ /-- The second part of the basis as `LinSols`. -/ @[simps!] def basis! (j : Fin n) : (PureU1 (2 * n + 1)).LinSols := ⟨basis!AsCharges j, by intro i simp at i match i with | 0 => exact basis!_linearACC j⟩ /-- The whole basis as `LinSols`. -/ def basisa : Fin n ⊕ Fin n → (PureU1 (2 * n + 1)).LinSols := fun i => match i with | .inl i => basis i | .inr i => basis! i end theBasisVectors /-- Swapping the elements δ!₁ j and δ!₂ j is equivalent to adding a vector basis!AsCharges j. -/ lemma swap!_as_add {S S' : (PureU1 (2 * n + 1)).LinSols} (j : Fin n) (hS : ((FamilyPermutations (2 * n + 1)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j))) S = S') : S'.val = S.val + (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j := by funext i rw [← hS, FamilyPermutations_anomalyFreeLinear_apply] by_cases hi : i = δ!₁ j subst hi simp [HSMul.hSMul, basis!_on_δ!₁_self, pairSwap_inv_fst] by_cases hi2 : i = δ!₂ j subst hi2 simp [HSMul.hSMul,basis!_on_δ!₂_self, pairSwap_inv_snd] simp [HSMul.hSMul] rw [basis!_on_other hi hi2] change S.val ((pairSwap (δ!₁ j) (δ!₂ j)).invFun i) =_ erw [pairSwap_inv_other (Ne.symm hi) (Ne.symm hi2)] simp /-- A point in the span of the first part of the basis as a charge. -/ def P (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basisAsCharges i /-- A point in the span of the second part of the basis as a charge. -/ def P! (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := ∑ i, f i • basis!AsCharges i /-- A point in the span of the basis as a charge. -/ def Pa (f : Fin n → ℚ) (g : Fin n → ℚ) : (PureU1 (2 * n + 1)).Charges := P f + P! g lemma P_δ₁ (f : Fin n → ℚ) (j : Fin n) : P f (δ₁ j) = f j := by rw [P, sum_of_charges] simp [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] rw [basis_on_δ₁_self] simp only [mul_one] intro k _ hkj rw [basis_on_δ₁_other hkj] simp only [mul_zero] simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff] lemma P!_δ!₁ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₁ j) = f j := by rw [P!, sum_of_charges] simp [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] rw [basis!_on_δ!₁_self] simp only [mul_one] intro k _ hkj rw [basis!_on_δ!₁_other hkj] simp only [mul_zero] simp only [mem_univ, not_true_eq_false, _root_.mul_eq_zero, IsEmpty.forall_iff] lemma P_δ₂ (f : Fin n → ℚ) (j : Fin n) : P f (δ₂ j) = - f j := by rw [P, sum_of_charges] simp [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] rw [basis_on_δ₂_self] simp only [mul_neg, mul_one] intro k _ hkj rw [basis_on_δ₂_other hkj] simp only [mul_zero] simp lemma P!_δ!₂ (f : Fin n → ℚ) (j : Fin n) : P! f (δ!₂ j) = - f j := by rw [P!, sum_of_charges] simp [HSMul.hSMul, SMul.smul] rw [Finset.sum_eq_single j] rw [basis!_on_δ!₂_self] simp only [mul_neg, mul_one] intro k _ hkj rw [basis!_on_δ!₂_other hkj] simp only [mul_zero] simp lemma P_δ₃ (f : Fin n → ℚ) : P f (δ₃) = 0 := by rw [P, sum_of_charges] simp [HSMul.hSMul, SMul.smul, basis_on_δ₃] lemma P!_δ!₃ (f : Fin n → ℚ) : P! f (δ!₃) = 0 := by rw [P!, sum_of_charges] simp [HSMul.hSMul, SMul.smul, basis!_on_δ!₃] lemma Pa_δa₁ (f g : Fin n.succ → ℚ) : Pa f g δa₁ = f 0 := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [δa₁_δ₁] rw [δa₁_δ!₃] rw [P_δ₁, P!_δ!₃] simp lemma Pa_δa₂ (f g : Fin n.succ → ℚ) (j : Fin n) : Pa f g (δa₂ j) = f j.succ + g j.castSucc := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [δa₂_δ₁] rw [δa₂_δ!₁] rw [P_δ₁, P!_δ!₁] lemma Pa_δa₃ (f g : Fin n.succ → ℚ) : Pa f g (δa₃) = g (Fin.last n) := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [δa₃_δ₃] rw [δa₃_δ!₁] rw [P_δ₃, P!_δ!₁] simp lemma Pa_δa₄ (f g : Fin n.succ → ℚ) (j : Fin n.succ) : Pa f g (δa₄ j) = - f j - g j := by rw [Pa] simp only [ACCSystemCharges.chargesAddCommMonoid_add] nth_rewrite 1 [δa₄_δ₂] rw [δa₄_δ!₂] rw [P_δ₂, P!_δ!₂] ring lemma P_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P f) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_δ] simp [P_δ₂, P_δ₁, P_δ₃] lemma P!_linearACC (f : Fin n → ℚ) : (accGrav (2 * n + 1)) (P! f) = 0 := by rw [accGrav] simp only [LinearMap.coe_mk, AddHom.coe_mk] rw [sum_δ!] simp [P!_δ!₂, P!_δ!₁, P!_δ!₃] lemma P_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P f) = 0 := by rw [accCube_explicit, sum_δ, P_δ₃] simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add] apply Finset.sum_eq_zero intro i _ simp [P_δ₁, P_δ₂] ring lemma P!_accCube (f : Fin n → ℚ) : accCube (2 * n +1) (P! f) = 0 := by rw [accCube_explicit, sum_δ!, P!_δ!₃] simp only [ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, Function.comp_apply, zero_add] apply Finset.sum_eq_zero intro i _ simp [P!_δ!₁, P!_δ!₂] ring lemma P_P_P!_accCube (g : Fin n → ℚ) (j : Fin n) : accCubeTriLinSymm (P g) (P g) (basis!AsCharges j) = (P g (δ!₁ j))^2 - (g j)^2 := by simp [accCubeTriLinSymm] rw [sum_δ!, basis!_on_δ!₃] simp only [mul_zero, Function.comp_apply, zero_add] rw [Finset.sum_eq_single j, basis!_on_δ!₁_self, basis!_on_δ!₂_self] rw [← δ₂_δ!₂, P_δ₂] ring intro k _ hkj erw [basis!_on_δ!₁_other hkj.symm, basis!_on_δ!₂_other hkj.symm] simp only [mul_zero, add_zero] simp lemma P_zero (f : Fin n → ℚ) (h : P f = 0) : ∀ i, f i = 0 := by intro i erw [← P_δ₁ f] rw [h] rfl lemma P!_zero (f : Fin n → ℚ) (h : P! f = 0) : ∀ i, f i = 0 := by intro i rw [← P!_δ!₁ f] rw [h] rfl lemma Pa_zero (f g : Fin n.succ → ℚ) (h : Pa f g = 0) : ∀ i, f i = 0 := by have h₃ := Pa_δa₁ f g rw [h] at h₃ change 0 = _ at h₃ simp at h₃ intro i have hinduc (iv : ℕ) (hiv : iv < n.succ) : f ⟨iv, hiv⟩ = 0 := by induction iv exact h₃.symm rename_i iv hi have hivi : iv < n.succ := by omega have hi2 := hi hivi have h1 := Pa_δa₄ f g ⟨iv, hivi⟩ rw [h, hi2] at h1 change 0 = _ at h1 simp at h1 have h2 := Pa_δa₂ f g ⟨iv, by omega⟩ simp [h, h1] at h2 exact h2.symm exact hinduc i.val i.prop lemma Pa_zero! (f g : Fin n.succ → ℚ) (h : Pa f g = 0) : ∀ i, g i = 0 := by have hf := Pa_zero f g h rw [Pa, P] at h simp [hf] at h exact P!_zero g h /-- A point in the span of the first part of the basis. -/ def P' (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis i /-- A point in the span of the second part of the basis. -/ def P!' (f : Fin n → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basis! i /-- A point in the span of the whole basis. -/ def Pa' (f : (Fin n) ⊕ (Fin n) → ℚ) : (PureU1 (2 * n + 1)).LinSols := ∑ i, f i • basisa i lemma Pa'_P'_P!' (f : (Fin n) ⊕ (Fin n) → ℚ) : Pa' f = P' (f ∘ Sum.inl) + P!' (f ∘ Sum.inr):= by exact Fintype.sum_sum_type _ lemma P'_val (f : Fin n → ℚ) : (P' f).val = P f := by simp [P', P] funext i rw [sum_of_anomaly_free_linear, sum_of_charges] simp [HSMul.hSMul] lemma P!'_val (f : Fin n → ℚ) : (P!' f).val = P! f := by simp [P!', P!] funext i rw [sum_of_anomaly_free_linear, sum_of_charges] simp [HSMul.hSMul] theorem basis_linear_independent : LinearIndependent ℚ (@basis n) := by apply Fintype.linearIndependent_iff.mpr intro f h change P' f = 0 at h have h1 : (P' f).val = 0 := by simp [h] rfl rw [P'_val] at h1 exact P_zero f h1 theorem basis!_linear_independent : LinearIndependent ℚ (@basis! n) := by apply Fintype.linearIndependent_iff.mpr intro f h change P!' f = 0 at h have h1 : (P!' f).val = 0 := by simp [h] rfl rw [P!'_val] at h1 exact P!_zero f h1 theorem basisa_linear_independent : LinearIndependent ℚ (@basisa n.succ) := by apply Fintype.linearIndependent_iff.mpr intro f h change Pa' f = 0 at h have h1 : (Pa' f).val = 0 := by simp [h] rfl rw [Pa'_P'_P!'] at h1 change (P' (f ∘ Sum.inl)).val + (P!' (f ∘ Sum.inr)).val = 0 at h1 rw [P!'_val, P'_val] at h1 change Pa (f ∘ Sum.inl) (f ∘ Sum.inr) = 0 at h1 have hf := Pa_zero (f ∘ Sum.inl) (f ∘ Sum.inr) h1 have hg := Pa_zero! (f ∘ Sum.inl) (f ∘ Sum.inr) h1 intro i simp_all cases i simp_all simp_all lemma Pa'_eq (f f' : (Fin n.succ) ⊕ (Fin n.succ) → ℚ) : Pa' f = Pa' f' ↔ f = f' := by apply Iff.intro intro h funext i rw [Pa', Pa'] at h have h1 : ∑ i : Fin n.succ ⊕ Fin n.succ, (f i + (- f' i)) • basisa i = 0 := by simp only [add_smul, neg_smul] rw [Finset.sum_add_distrib] rw [h] rw [← Finset.sum_add_distrib] simp have h2 : ∀ i, (f i + (- f' i)) = 0 := by exact Fintype.linearIndependent_iff.mp (@basisa_linear_independent (n)) (fun i => f i + -f' i) h1 have h2i := h2 i linarith intro h rw [h] /-! TODO: Replace the definition of `join` with a Mathlib definition, most likely `Sum.elim`. -/ /-- A helper function for what follows. -/ def join (g f : Fin n → ℚ) : Fin n ⊕ Fin n → ℚ := fun i => match i with | .inl i => g i | .inr i => f i lemma join_ext (g g' : Fin n → ℚ) (f f' : Fin n → ℚ) : join g f = join g' f' ↔ g = g' ∧ f = f' := by apply Iff.intro intro h apply And.intro funext i exact congr_fun h (Sum.inl i) funext i exact congr_fun h (Sum.inr i) intro h rw [h.left, h.right] lemma join_Pa (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) : Pa' (join g f) = Pa' (join g' f') ↔ Pa g f = Pa g' f' := by apply Iff.intro intro h rw [Pa'_eq] at h rw [join_ext] at h rw [h.left, h.right] intro h apply ACCSystemLinear.LinSols.ext rw [Pa'_P'_P!', Pa'_P'_P!'] simp [P'_val, P!'_val] exact h lemma Pa_eq (g g' : Fin n.succ → ℚ) (f f' : Fin n.succ → ℚ) : Pa g f = Pa g' f' ↔ g = g' ∧ f = f' := by rw [← join_Pa] rw [← join_ext] exact Pa'_eq _ _ lemma basisa_card : Fintype.card ((Fin n.succ) ⊕ (Fin n.succ)) = FiniteDimensional.finrank ℚ (PureU1 (2 * n.succ + 1)).LinSols := by erw [BasisLinear.finrank_AnomalyFreeLinear] simp only [Fintype.card_sum, Fintype.card_fin] omega /-- The basis formed out of our basisa vectors. -/ noncomputable def basisaAsBasis : Basis (Fin n.succ ⊕ Fin n.succ) ℚ (PureU1 (2 * n.succ + 1)).LinSols := basisOfLinearIndependentOfCardEqFinrank (@basisa_linear_independent n) basisa_card lemma span_basis (S : (PureU1 (2 * n.succ + 1)).LinSols) : ∃ (g f : Fin n.succ → ℚ) , S.val = P g + P! f := by have h := (mem_span_range_iff_exists_fun ℚ).mp (Basis.mem_span basisaAsBasis S) obtain ⟨f, hf⟩ := h simp [basisaAsBasis] at hf change P' _ + P!' _ = S at hf use f ∘ Sum.inl use f ∘ Sum.inr rw [← hf] simp [P'_val, P!'_val] rfl lemma span_basis_swap! {S : (PureU1 (2 * n.succ + 1)).LinSols} (j : Fin n.succ) (hS : ((FamilyPermutations (2 * n.succ + 1)).linSolRep (pairSwap (δ!₁ j) (δ!₂ j))) S = S') (g f : Fin n.succ → ℚ) (hS1 : S.val = P g + P! f): ∃ (g' f' : Fin n.succ → ℚ), S'.val = P g' + P! f' ∧ P! f' = P! f + (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j ∧ g' = g := by let X := P! f + (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j have hf : P! f ∈ Submodule.span ℚ (Set.range basis!AsCharges) := by rw [(mem_span_range_iff_exists_fun ℚ)] use f rfl have hP : (S.val (δ!₂ j) - S.val (δ!₁ j)) • basis!AsCharges j ∈ Submodule.span ℚ (Set.range basis!AsCharges) := by apply Submodule.smul_mem apply SetLike.mem_of_subset apply Submodule.subset_span simp_all only [Set.mem_range, exists_apply_eq_apply] have hX : X ∈ Submodule.span ℚ (Set.range (basis!AsCharges)) := by apply Submodule.add_mem exact hf exact hP have hXsum := (mem_span_range_iff_exists_fun ℚ).mp hX obtain ⟨f', hf'⟩ := hXsum use g use f' change P! f' = _ at hf' erw [hf'] simp only [and_self, and_true] change S'.val = P g + (P! f + _) rw [← add_assoc, ← hS1] apply swap!_as_add at hS exact hS end VectorLikeOddPlane end PureU1