/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexListColor import HepLean.SpaceTime.LorentzTensor.Basic import HepLean.SpaceTime.LorentzTensor.RisingLowering import HepLean.SpaceTime.LorentzTensor.Contraction /-! # The structure of a tensor with a string of indices -/ namespace TensorStructure noncomputable section open TensorColor open IndexNotation variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R) variable {d : β„•} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] {cX cX2 : X β†’ 𝓣.Color} {cY : Y β†’ 𝓣.Color} {cZ : Z β†’ 𝓣.Color} {cW : W β†’ 𝓣.Color} {cY' : Y' β†’ 𝓣.Color} {ΞΌ Ξ½ Ξ· : 𝓣.Color} variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color] /-- The structure an tensor with a index specification e.g. `α΅˜ΒΉα΅€β‚‚`. -/ structure TensorIndex where /-- The list of indices. -/ index : IndexListColor 𝓣.toTensorColor /-- The underlying tensor. -/ tensor : 𝓣.Tensor index.1.colorMap namespace TensorIndex open TensorColor IndexListColor variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color] variable {n m : β„•} {cn : Fin n β†’ 𝓣.Color} {cm : Fin m β†’ 𝓣.Color} lemma index_eq_colorMap_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (hi : T₁.index = Tβ‚‚.index) : (Tβ‚‚.index).1.colorMap = (T₁.index).1.colorMap ∘ (Fin.castOrderIso (by rw [hi])).toEquiv := by funext i congr 1 rw [hi] simp only [RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply] exact (Fin.heq_ext_iff (congrArg IndexList.numIndices (congrArg Subtype.val (id (Eq.symm hi))))).mpr rfl lemma ext (T₁ Tβ‚‚ : 𝓣.TensorIndex) (hi : T₁.index = Tβ‚‚.index) (h : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [hi])).toEquiv (index_eq_colorMap_eq hi) Tβ‚‚.tensor) : T₁ = Tβ‚‚ := by cases T₁; cases Tβ‚‚ simp at hi subst hi simp_all lemma index_eq_of_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : T₁ = Tβ‚‚) : T₁.index = Tβ‚‚.index := by cases h rfl lemma tensor_eq_of_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : T₁ = Tβ‚‚) : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq h])).toEquiv (index_eq_colorMap_eq (index_eq_of_eq h)) Tβ‚‚.tensor := by have hi := index_eq_of_eq h cases T₁ cases Tβ‚‚ simp at hi subst hi simpa using h /-- The construction of a `TensorIndex` from a tensor, a IndexListColor, and a condition on the dual maps. -/ def mkDualMap (T : 𝓣.Tensor cn) (l : IndexListColor 𝓣.toTensorColor) (hn : n = l.1.length) (hd : ColorMap.DualMap l.1.colorMap (cn ∘ Fin.cast hn.symm)) : 𝓣.TensorIndex where index := l tensor := 𝓣.mapIso (Equiv.refl _) (ColorMap.DualMap.split_dual' (by simp [hd])) <| 𝓣.dualize (ColorMap.DualMap.split l.1.colorMap (cn ∘ Fin.cast hn.symm)) <| (𝓣.mapIso (Fin.castOrderIso hn).toEquiv rfl T : 𝓣.Tensor (cn ∘ Fin.cast hn.symm)) /-! ## The contraction of indices -/ /-- The contraction of indices in a `TensorIndex`. -/ def contr (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where index := T.index.contr tensor := 𝓣.mapIso (Fin.castOrderIso T.index.contr_numIndices.symm).toEquiv T.index.contr_colorMap <| 𝓣.contr (T.index.splitContr).symm T.index.splitContr_map T.tensor /-- Applying contr to a tensor whose indices has no contracts does not do anything. -/ @[simp] lemma contr_of_hasNoContr (T : 𝓣.TensorIndex) (h : T.index.1.HasNoContr) : T.contr = T := by refine ext _ _ ?_ ?_ exact Subtype.eq (T.index.1.contrIndexList_of_hasNoContr h) simp only [contr] have h1 : IsEmpty T.index.1.contrPairSet := T.index.1.contrPairSet_isEmpty_of_hasNoContr h cases T rename_i i T simp only refine PiTensorProduct.induction_on' T ?_ (by intro a b hx hy simp [map_add, add_mul, hx, hy]) intro r f simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, LinearMapClass.map_smul, mapIso_tprod, id_eq, eq_mpr_eq_cast, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv] apply congrArg erw [TensorStructure.contr_tprod_isEmpty] erw [mapIso_tprod] apply congrArg funext l rw [← LinearEquiv.symm_apply_eq] simp only [colorModuleCast, Equiv.cast_symm, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv, Function.comp_apply, LinearEquiv.coe_mk, Equiv.cast_apply, LinearEquiv.coe_symm_mk, cast_cast] apply cast_eq_iff_heq.mpr rw [splitContr_symm_apply_of_hasNoContr _ h] rfl @[simp] lemma contr_contr (T : 𝓣.TensorIndex) : T.contr.contr = T.contr := T.contr.contr_of_hasNoContr T.index.1.contrIndexList_hasNoContr @[simp] lemma contr_index (T : 𝓣.TensorIndex) : T.contr.index = T.index.contr := rfl /-! ## Product of `TensorIndex` allowed -/ /-- The tensor product of two `TensorIndex`. -/ def prod (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ Tβ‚‚.index.1)) : 𝓣.TensorIndex where index := T₁.index.prod Tβ‚‚.index h tensor := 𝓣.mapIso ((Fin.castOrderIso (IndexListColor.prod_numIndices)).toEquiv.trans (finSumFinEquiv.symm)).symm (IndexListColor.prod_colorMap h) <| 𝓣.tensoratorEquiv _ _ (T₁.tensor βŠ—β‚œ[R] Tβ‚‚.tensor) @[simp] lemma prod_index (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ Tβ‚‚.index.1)) : (prod T₁ Tβ‚‚ h).index = T₁.index.prod Tβ‚‚.index h := rfl /-! ## Scalar multiplication of -/ /-- The scalar multiplication of a `TensorIndex` by an element of `R`. -/ def smul (r : R) (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where index := T.index tensor := r β€’ T.tensor /-! ## Addition of allowed `TensorIndex` -/ /-- The addition of two `TensorIndex` given the condition that, after contraction, their index lists are the same. -/ def add (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : IndexListColor.PermContr T₁.index Tβ‚‚.index) : 𝓣.TensorIndex where index := T₁.index.contr tensor := let T1 := T₁.contr.tensor let T2 :𝓣.Tensor (T₁.contr.index).1.colorMap := 𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap Tβ‚‚.contr.tensor T1 + T2 /-! ## Equivalence relation on `TensorIndex` -/ /-- An (equivalence) relation on two `TensorIndex`. The point in this equivalence relation is that certain things (like the permutation of indices, the contraction of indices, or rising or lowering indices) can be placed in the indices or moved to the tensor itself. These two descriptions are equivalent. -/ def Rel (T₁ Tβ‚‚ : 𝓣.TensorIndex) : Prop := T₁.index.PermContr Tβ‚‚.index ∧ βˆ€ (h : T₁.index.PermContr Tβ‚‚.index), T₁.contr.tensor = 𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap Tβ‚‚.contr.tensor namespace Rel /-- Rel is reflexive. -/ lemma refl (T : 𝓣.TensorIndex) : Rel T T := by apply And.intro exact IndexListColor.PermContr.refl T.index intro h simp [PermContr.toEquiv_refl'] /-- Rel is symmetric. -/ lemma symm {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : Rel T₁ Tβ‚‚) : Rel Tβ‚‚ T₁ := by apply And.intro h.1.symm intro h' rw [← mapIso_symm] symm erw [LinearEquiv.symm_apply_eq] rw [h.2] apply congrFun congr exact h'.symm /-- Rel is transitive. -/ lemma trans {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} (h1 : Rel T₁ Tβ‚‚) (h2 : Rel Tβ‚‚ T₃) : Rel T₁ T₃ := by apply And.intro (h1.1.trans h2.1) intro h change _ = (𝓣.mapIso (h1.1.trans h2.1).toEquiv.symm _) T₃.contr.tensor trans (𝓣.mapIso ((h1.1).toEquiv.trans (h2.1).toEquiv).symm (by rw [← PermContr.toEquiv_trans] exact proof_2 T₁ T₃ h)) T₃.contr.tensor swap congr rw [← PermContr.toEquiv_trans] erw [← mapIso_trans] simp only [LinearEquiv.trans_apply] apply (h1.2 h1.1).trans apply congrArg exact h2.2 h2.1 /-- Rel forms an equivalence relation. -/ lemma isEquivalence : Equivalence (@Rel _ _ 𝓣 _) where refl := Rel.refl symm := Rel.symm trans := Rel.trans /-- The equality of tensors corresponding to related tensor indices. -/ lemma to_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : Rel T₁ Tβ‚‚) : T₁.contr.tensor = 𝓣.mapIso h.1.toEquiv.symm h.1.toEquiv_colorMap Tβ‚‚.contr.tensor := h.2 h.1 end Rel /-- The structure of a Setoid on `𝓣.TensorIndex` induced by `Rel`. -/ instance asSetoid : Setoid 𝓣.TensorIndex := ⟨Rel, Rel.isEquivalence⟩ /-- A tensor index is equivalent to its contraction. -/ lemma self_equiv_contr (T : 𝓣.TensorIndex) : T β‰ˆ T.contr := by apply And.intro simp only [PermContr, contr_index, IndexListColor.contr_contr, List.Perm.refl, true_and] rw [IndexListColor.contr_contr] exact T.index.contr.1.hasNoContr_color_eq_of_id_eq T.index.1.contrIndexList_hasNoContr intro h rw [tensor_eq_of_eq T.contr_contr] simp only [contr_index, mapIso_mapIso] trans 𝓣.mapIso (Equiv.refl _) (by rfl) T.contr.tensor simp only [contr_index, mapIso_refl, LinearEquiv.refl_apply] congr apply Equiv.ext intro x rw [PermContr.toEquiv_contr_eq T.index.contr_contr.symm] rfl /-! TODO: Show that the product is well defined with respect to Rel. -/ /-! TODO : Show that addition is well defined with respect to Rel. -/ end TensorIndex end end TensorStructure