/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexListColor import HepLean.SpaceTime.LorentzTensor.Basic import HepLean.SpaceTime.LorentzTensor.RisingLowering import HepLean.SpaceTime.LorentzTensor.Contraction /-! # The structure of a tensor with a string of indices -/ namespace TensorStructure noncomputable section open TensorColor open IndexNotation variable {R : Type} [CommSemiring R] (𝓣 : TensorStructure R) variable {d : β„•} {X Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] [Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W] {cX cX2 : X β†’ 𝓣.Color} {cY : Y β†’ 𝓣.Color} {cZ : Z β†’ 𝓣.Color} {cW : W β†’ 𝓣.Color} {cY' : Y' β†’ 𝓣.Color} {ΞΌ Ξ½ Ξ· : 𝓣.Color} variable [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color] /-- The structure an tensor with a index specification e.g. `α΅˜ΒΉα΅€β‚‚`. -/ structure TensorIndex where /-- The list of indices. -/ index : IndexListColor 𝓣.toTensorColor /-- The underlying tensor. -/ tensor : 𝓣.Tensor index.1.colorMap namespace TensorIndex open TensorColor IndexListColor variable {𝓣 : TensorStructure R} [IndexNotation 𝓣.Color] [Fintype 𝓣.Color] [DecidableEq 𝓣.Color] variable {n m : β„•} {cn : Fin n β†’ 𝓣.Color} {cm : Fin m β†’ 𝓣.Color} lemma index_eq_colorMap_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (hi : T₁.index = Tβ‚‚.index) : (Tβ‚‚.index).1.colorMap = (T₁.index).1.colorMap ∘ (Fin.castOrderIso (by rw [hi])).toEquiv := by funext i congr 1 rw [hi] simp only [RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply] exact (Fin.heq_ext_iff (congrArg IndexList.numIndices (congrArg Subtype.val (id (Eq.symm hi))))).mpr rfl lemma ext (T₁ Tβ‚‚ : 𝓣.TensorIndex) (hi : T₁.index = Tβ‚‚.index) (h : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [hi])).toEquiv (index_eq_colorMap_eq hi) Tβ‚‚.tensor) : T₁ = Tβ‚‚ := by cases T₁; cases Tβ‚‚ simp at hi subst hi simp_all lemma index_eq_of_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : T₁ = Tβ‚‚) : T₁.index = Tβ‚‚.index := by cases h rfl @[simp] lemma tensor_eq_of_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : T₁ = Tβ‚‚) : T₁.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq h])).toEquiv (index_eq_colorMap_eq (index_eq_of_eq h)) Tβ‚‚.tensor := by have hi := index_eq_of_eq h cases T₁ cases Tβ‚‚ simp at hi subst hi simpa using h /-- The construction of a `TensorIndex` from a tensor, a IndexListColor, and a condition on the dual maps. -/ def mkDualMap (T : 𝓣.Tensor cn) (l : IndexListColor 𝓣.toTensorColor) (hn : n = l.1.length) (hd : ColorMap.DualMap l.1.colorMap (cn ∘ Fin.cast hn.symm)) : 𝓣.TensorIndex where index := l tensor := 𝓣.mapIso (Equiv.refl _) (ColorMap.DualMap.split_dual' (by simp [hd])) <| 𝓣.dualize (ColorMap.DualMap.split l.1.colorMap (cn ∘ Fin.cast hn.symm)) <| (𝓣.mapIso (Fin.castOrderIso hn).toEquiv rfl T : 𝓣.Tensor (cn ∘ Fin.cast hn.symm)) /-! ## The contraction of indices -/ /-- The contraction of indices in a `TensorIndex`. -/ def contr (T : 𝓣.TensorIndex) : 𝓣.TensorIndex where index := T.index.contr tensor := 𝓣.mapIso (Fin.castOrderIso T.index.contr_numIndices.symm).toEquiv T.index.contr_colorMap <| 𝓣.contr (T.index.splitContr).symm T.index.splitContr_map T.tensor /-- Applying contr to a tensor whose indices has no contracts does not do anything. -/ @[simp] lemma contr_of_hasNoContr (T : 𝓣.TensorIndex) (h : T.index.1.HasNoContr) : T.contr = T := by refine ext _ _ ?_ ?_ exact Subtype.eq (T.index.1.contrIndexList_of_hasNoContr h) simp only [contr] have h1 : IsEmpty T.index.1.contrPairSet := T.index.1.contrPairSet_isEmpty_of_hasNoContr h cases T rename_i i T simp only refine PiTensorProduct.induction_on' T ?_ (by intro a b hx hy simp [map_add, add_mul, hx, hy]) intro r f simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, LinearMapClass.map_smul, mapIso_tprod, id_eq, eq_mpr_eq_cast, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv] apply congrArg erw [TensorStructure.contr_tprod_isEmpty] erw [mapIso_tprod] apply congrArg funext l rw [← LinearEquiv.symm_apply_eq] simp only [colorModuleCast, Equiv.cast_symm, OrderIso.toEquiv_symm, RelIso.coe_fn_toEquiv, Function.comp_apply, LinearEquiv.coe_mk, Equiv.cast_apply, LinearEquiv.coe_symm_mk, cast_cast] apply cast_eq_iff_heq.mpr rw [splitContr_symm_apply_of_hasNoContr _ h] rfl @[simp] lemma contr_contr (T : 𝓣.TensorIndex) : T.contr.contr = T.contr := T.contr.contr_of_hasNoContr T.index.1.contrIndexList_hasNoContr @[simp] lemma contr_index (T : 𝓣.TensorIndex) : T.contr.index = T.index.contr := rfl /-! ## Product of `TensorIndex` allowed -/ /-- The tensor product of two `TensorIndex`. -/ def prod (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ Tβ‚‚.index.1)) : 𝓣.TensorIndex where index := T₁.index.prod Tβ‚‚.index h tensor := 𝓣.mapIso ((Fin.castOrderIso (IndexListColor.prod_numIndices)).toEquiv.trans (finSumFinEquiv.symm)).symm (IndexListColor.prod_colorMap h) <| 𝓣.tensoratorEquiv _ _ (T₁.tensor βŠ—β‚œ[R] Tβ‚‚.tensor) @[simp] lemma prod_index (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : IndexListColorProp 𝓣.toTensorColor (T₁.index.1 ++ Tβ‚‚.index.1)) : (prod T₁ Tβ‚‚ h).index = T₁.index.prod Tβ‚‚.index h := rfl /-! ## Scalar multiplication of -/ /-- The scalar multiplication of a `TensorIndex` by an element of `R`. -/ instance : SMul R 𝓣.TensorIndex where smul := fun r T => { index := T.index tensor := r β€’ T.tensor} @[simp] lemma smul_index (r : R) (T : 𝓣.TensorIndex) : (r β€’ T).index = T.index := rfl @[simp] lemma smul_tensor (r : R) (T : 𝓣.TensorIndex) : (r β€’ T).tensor = r β€’ T.tensor := rfl @[simp] lemma smul_contr (r : R) (T : 𝓣.TensorIndex) : (r β€’ T).contr = r β€’ T.contr := by refine ext _ _ rfl ?_ simp only [contr, smul_index, smul_tensor, LinearMapClass.map_smul, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, mapIso_refl, LinearEquiv.refl_apply] /-! ## Equivalence relation on `TensorIndex` -/ /-- An (equivalence) relation on two `TensorIndex`. The point in this equivalence relation is that certain things (like the permutation of indices, the contraction of indices, or rising or lowering indices) can be placed in the indices or moved to the tensor itself. These two descriptions are equivalent. -/ def Rel (T₁ Tβ‚‚ : 𝓣.TensorIndex) : Prop := T₁.index.PermContr Tβ‚‚.index ∧ βˆ€ (h : T₁.index.PermContr Tβ‚‚.index), T₁.contr.tensor = 𝓣.mapIso h.toEquiv.symm h.toEquiv_colorMap Tβ‚‚.contr.tensor namespace Rel /-- Rel is reflexive. -/ lemma refl (T : 𝓣.TensorIndex) : Rel T T := by apply And.intro exact IndexListColor.PermContr.refl T.index intro h simp [PermContr.toEquiv_refl'] /-- Rel is symmetric. -/ lemma symm {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : Rel T₁ Tβ‚‚) : Rel Tβ‚‚ T₁ := by apply And.intro h.1.symm intro h' rw [← mapIso_symm] symm erw [LinearEquiv.symm_apply_eq] rw [h.2] apply congrFun congr exact h'.symm /-- Rel is transitive. -/ lemma trans {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} (h1 : Rel T₁ Tβ‚‚) (h2 : Rel Tβ‚‚ T₃) : Rel T₁ T₃ := by apply And.intro (h1.1.trans h2.1) intro h change _ = (𝓣.mapIso (h1.1.trans h2.1).toEquiv.symm _) T₃.contr.tensor trans (𝓣.mapIso ((h1.1).toEquiv.trans (h2.1).toEquiv).symm (by rw [PermContr.toEquiv_trans] exact proof_2 T₁ T₃ h)) T₃.contr.tensor swap congr rw [PermContr.toEquiv_trans] erw [← mapIso_trans] simp only [LinearEquiv.trans_apply] apply (h1.2 h1.1).trans apply congrArg exact h2.2 h2.1 /-- Rel forms an equivalence relation. -/ lemma isEquivalence : Equivalence (@Rel _ _ 𝓣 _) where refl := Rel.refl symm := Rel.symm trans := Rel.trans /-- The equality of tensors corresponding to related tensor indices. -/ lemma to_eq {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : Rel T₁ Tβ‚‚) : T₁.contr.tensor = 𝓣.mapIso h.1.toEquiv.symm h.1.toEquiv_colorMap Tβ‚‚.contr.tensor := h.2 h.1 end Rel /-- The structure of a Setoid on `𝓣.TensorIndex` induced by `Rel`. -/ instance asSetoid : Setoid 𝓣.TensorIndex := ⟨Rel, Rel.isEquivalence⟩ /-- A tensor index is equivalent to its contraction. -/ lemma rel_contr (T : 𝓣.TensorIndex) : T β‰ˆ T.contr := by apply And.intro simp only [PermContr, contr_index, IndexListColor.contr_contr, List.Perm.refl, true_and] rw [IndexListColor.contr_contr] exact T.index.contr.1.hasNoContr_color_eq_of_id_eq T.index.1.contrIndexList_hasNoContr intro h rw [tensor_eq_of_eq T.contr_contr] simp only [contr_index, mapIso_mapIso] trans 𝓣.mapIso (Equiv.refl _) (by rfl) T.contr.tensor simp only [contr_index, mapIso_refl, LinearEquiv.refl_apply] congr apply Equiv.ext intro x rw [PermContr.toEquiv_contr_eq T.index.contr_contr.symm] rfl lemma smul_equiv {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : T₁ β‰ˆ Tβ‚‚) (r : R) : r β€’ T₁ β‰ˆ r β€’ Tβ‚‚ := by apply And.intro h.1 intro h1 rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r Tβ‚‚)] simp only [contr_index, smul_index, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, mapIso_refl, smul_tensor, LinearMapClass.map_smul, LinearEquiv.refl_apply] apply congrArg exact h.2 h1 /-! ## Addition of allowed `TensorIndex` -/ def AddCond (T₁ Tβ‚‚ : 𝓣.TensorIndex) : Prop := T₁.index.PermContr Tβ‚‚.index namespace AddCond lemma to_PermContr {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : T₁.index.PermContr Tβ‚‚.index := h @[symm] lemma symm {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : AddCond Tβ‚‚ T₁ := by rw [AddCond] at h exact h.symm lemma refl (T : 𝓣.TensorIndex) : AddCond T T := by exact PermContr.refl _ lemma trans {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} (h1 : AddCond T₁ Tβ‚‚) (h2 : AddCond Tβ‚‚ T₃) : AddCond T₁ T₃ := by rw [AddCond] at h1 h2 exact h1.trans h2 lemma rel_left {T₁ T₁' Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) (h' : T₁ β‰ˆ T₁') : AddCond T₁' Tβ‚‚ := h'.1.symm.trans h lemma rel_right {T₁ Tβ‚‚ Tβ‚‚' : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) (h' : Tβ‚‚ β‰ˆ Tβ‚‚') : AddCond T₁ Tβ‚‚' := h.trans h'.1 @[simp] def toEquiv {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : Fin T₁.contr.index.1.length ≃ Fin Tβ‚‚.contr.index.1.length := h.to_PermContr.toEquiv lemma toEquiv_colorMap {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : ColorMap.MapIso h.toEquiv (T₁.contr.index).1.colorMap (Tβ‚‚.contr.index).1.colorMap := h.to_PermContr.toEquiv_colorMap' end AddCond /-- The addition of two `TensorIndex` given the condition that, after contraction, their index lists are the same. -/ def add (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : 𝓣.TensorIndex where index := Tβ‚‚.index.contr tensor := (𝓣.mapIso h.toEquiv h.toEquiv_colorMap T₁.contr.tensor) + Tβ‚‚.contr.tensor notation:71 T₁ "+["h"]" Tβ‚‚:72 => add T₁ Tβ‚‚ h namespace AddCond lemma add_right {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ T₃) (h' : AddCond Tβ‚‚ T₃) : AddCond T₁ (Tβ‚‚ +[h'] T₃) := by simpa only [AddCond, add, contr_index] using h.rel_right T₃.rel_contr lemma add_left {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) (h' : AddCond Tβ‚‚ T₃) : AddCond (T₁ +[h] Tβ‚‚) T₃ := (add_right h'.symm h).symm lemma of_add_right' {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond Tβ‚‚ T₃} (h : AddCond T₁ (Tβ‚‚ +[h'] T₃)) : AddCond T₁ T₃ := by change T₁.AddCond T₃.contr at h exact h.rel_right T₃.rel_contr.symm lemma of_add_right {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond Tβ‚‚ T₃} (h : AddCond T₁ (Tβ‚‚ +[h'] T₃)) : AddCond T₁ Tβ‚‚ := h.of_add_right'.trans h'.symm lemma of_add_left {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ Tβ‚‚} (h : AddCond (T₁ +[h'] Tβ‚‚) T₃) : AddCond Tβ‚‚ T₃ := (of_add_right' h.symm).symm lemma of_add_left' {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ Tβ‚‚} (h : AddCond (T₁ +[h'] Tβ‚‚) T₃) : AddCond T₁ T₃ := (of_add_right h.symm).symm lemma add_left_of_add_right {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond Tβ‚‚ T₃} (h : AddCond T₁ (Tβ‚‚ +[h'] T₃)) : AddCond (T₁ +[of_add_right h] Tβ‚‚) T₃ := by have h0 := ((of_add_right' h).trans h'.symm) exact (h'.symm.add_right h0).symm lemma add_right_of_add_left {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ Tβ‚‚} (h : AddCond (T₁ +[h'] Tβ‚‚) T₃) : AddCond T₁ (Tβ‚‚ +[of_add_left h] T₃) := (add_left (of_add_left h) (of_add_left' h).symm).symm lemma add_comm {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : AddCond (T₁ +[h] Tβ‚‚) (Tβ‚‚ +[h.symm] T₁) := by apply add_right apply add_left exact h.symm end AddCond @[simp] lemma add_index (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : (add T₁ Tβ‚‚ h).index = Tβ‚‚.index.contr := rfl @[simp] lemma add_tensor (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : (add T₁ Tβ‚‚ h).tensor = (𝓣.mapIso h.toEquiv h.toEquiv_colorMap T₁.contr.tensor) + Tβ‚‚.contr.tensor := by rfl /-- Scalar multiplication commutes with addition. -/ lemma smul_add (r : R) (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : r β€’ (T₁ +[h] Tβ‚‚) = r β€’ T₁ +[h] r β€’ Tβ‚‚ := by refine ext _ _ rfl ?_ simp [add] rw [tensor_eq_of_eq (smul_contr r T₁), tensor_eq_of_eq (smul_contr r Tβ‚‚)] simp only [smul_index, contr_index, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, mapIso_refl, smul_tensor, AddCond.toEquiv, LinearMapClass.map_smul, LinearEquiv.refl_apply] lemma add_hasNoContr (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : (T₁ +[h] Tβ‚‚).index.1.HasNoContr := by simpa using Tβ‚‚.index.1.contrIndexList_hasNoContr @[simp] lemma contr_add (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : (T₁ +[h] Tβ‚‚).contr = T₁ +[h] Tβ‚‚ := contr_of_hasNoContr (T₁ +[h] Tβ‚‚) (add_hasNoContr T₁ Tβ‚‚ h) @[simp] lemma contr_add_tensor (T₁ Tβ‚‚ : 𝓣.TensorIndex) (h : AddCond T₁ Tβ‚‚) : (T₁ +[h] Tβ‚‚).contr.tensor = 𝓣.mapIso (Fin.castOrderIso (by rw [index_eq_of_eq (contr_add T₁ Tβ‚‚ h)])).toEquiv (index_eq_colorMap_eq (index_eq_of_eq (contr_add T₁ Tβ‚‚ h))) (T₁ +[h] Tβ‚‚).tensor := tensor_eq_of_eq (contr_add T₁ Tβ‚‚ h) open AddCond in lemma add_assoc' {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond Tβ‚‚ T₃} (h : AddCond T₁ (Tβ‚‚ +[h'] T₃)) : T₁ +[h] (Tβ‚‚ +[h'] T₃) = T₁ +[h'.of_add_right h] Tβ‚‚ +[h'.add_left_of_add_right h] T₃ := by refine ext _ _ ?_ ?_ simp simp only [add_index, add_tensor, contr_index, toEquiv, contr_add_tensor, map_add, mapIso_mapIso] rw [_root_.add_assoc] congr rw [← PermContr.toEquiv_contr_eq, ← PermContr.toEquiv_contr_eq] rw [PermContr.toEquiv_trans, PermContr.toEquiv_trans, PermContr.toEquiv_trans] simp only [IndexListColor.contr_contr] simp only [IndexListColor.contr_contr] rw [← PermContr.toEquiv_contr_eq, PermContr.toEquiv_trans] simp only [IndexListColor.contr_contr] open AddCond in lemma add_assoc {T₁ Tβ‚‚ T₃ : 𝓣.TensorIndex} {h' : AddCond T₁ Tβ‚‚} (h : AddCond (T₁ +[h'] Tβ‚‚) T₃) : T₁ +[h'] Tβ‚‚ +[h] T₃ = T₁ +[h'.add_right_of_add_left h] (Tβ‚‚ +[h'.of_add_left h] T₃) := by rw [add_assoc'] lemma add_comm {T₁ Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) : T₁ +[h] Tβ‚‚ β‰ˆ Tβ‚‚ +[h.symm] T₁ := by apply And.intro h.add_comm intro h simp rw [_root_.add_comm] congr 1 all_goals apply congrFun apply congrArg congr 1 rw [← PermContr.toEquiv_contr_eq, ← PermContr.toEquiv_contr_eq, PermContr.toEquiv_trans, PermContr.toEquiv_symm, PermContr.toEquiv_trans] simp only [IndexListColor.contr_contr] simp only [IndexListColor.contr_contr] open AddCond in lemma add_rel_left {T₁ T₁' Tβ‚‚ : 𝓣.TensorIndex} (h : AddCond T₁ Tβ‚‚) (h' : T₁ β‰ˆ T₁') : T₁ +[h] Tβ‚‚ β‰ˆ T₁' +[h.rel_left h'] Tβ‚‚ := by apply And.intro (PermContr.refl _) intro h simp congr 1 rw [h'.to_eq] simp congr 1 congr 1 rw [PermContr.toEquiv_symm, ← PermContr.toEquiv_contr_eq, PermContr.toEquiv_trans, PermContr.toEquiv_trans, PermContr.toEquiv_trans] simp only [IndexListColor.contr_contr] /-! TODO: Show that contr add equals add. -/ /-! TODO: Show that add is associative. -/ /-! TODO: Show that the product is well defined with respect to Rel. -/ /-! TODO : Show that addition is well defined with respect to Rel. -/ end TensorIndex end end TensorStructure