/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.OverColor.Iso import HepLean.Tensors.OverColor.Discrete import HepLean.Tensors.OverColor.Lift import Mathlib.CategoryTheory.Monoidal.NaturalTransformation import LLMLean /-! ## Tensor trees -/ open IndexNotation open CategoryTheory open MonoidalCategory /-- The sturcture of a type of tensors e.g. Lorentz tensors, Einstien tensors, complex Lorentz tensors. Note: This structure is not fully defined yet. -/ structure TensorStruct where /-- The colors of indices e.g. up or down. -/ C : Type /-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/ G : Type /-- An instance of `G` as a group. -/ G_group : Group G /-- The field over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/ k : Type /-- An instance of `k` as a commutative ring. -/ k_commRing : CommRing k /-- A `MonoidalFunctor` from `OverColor C` giving the rep corresponding to a map of colors `X → C`. -/ FDiscrete : Discrete C ⥤ Rep k G /-- A map from `C` to `C`. An involution. -/ τ : C → C τ_involution : Function.Involutive τ /-- The natural transformation describing contraction. -/ contr : OverColor.Discrete.pairτ FDiscrete τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G) /-- The natural transformation describing the metric. -/ metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FDiscrete /-- The natural transformation describing the unit. -/ unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FDiscrete τ /-- A specification of the dimension of each color in C. This will be used for explicit evaluation of tensors. -/ evalNo : C → ℕ noncomputable section namespace TensorStruct variable (S : TensorStruct) instance : CommRing S.k := S.k_commRing instance : Group S.G := S.G_group /-- The lift of the functor `S.F` to a monoidal functor. -/ def F : MonoidalFunctor (OverColor S.C) (Rep S.k S.G) := (OverColor.lift).obj S.FDiscrete /- def metric (c : S.C) : S.F.obj (OverColor.mk ![c, c]) := (OverColor.Discrete.pairIso S.FDiscrete c).hom.hom <| (S.metricNat.app (Discrete.mk c)).hom (1 : S.k) -/ /-- The isomorphism between the image of a map `Fin 1 ⊕ Fin 1 → S.C` contructed by `finExtractTwo` under `S.F.obj`, and an object in the image of `OverColor.Discrete.pairτ S.FDiscrete`. -/ def contrFin1Fin1 {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) ≅ (OverColor.Discrete.pairτ S.FDiscrete S.τ).obj { as := c i } := by apply (S.F.mapIso (OverColor.mkSum (((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)))).trans apply (S.F.μIso _ _).symm.trans apply tensorIso ?_ ?_ · symm apply (OverColor.forgetLiftApp S.FDiscrete (c i)).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x rfl · symm apply (OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).symm.trans apply S.F.mapIso apply OverColor.mkIso funext x fin_cases x simp [h] lemma contrFin1Fin1_inv_tmul {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : S.FDiscrete.obj { as := c i }) (y : S.FDiscrete.obj { as := S.τ (c i) }) : (S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) = PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map (eqToHom (by simp [h]))).hom y) := by simp [contrFin1Fin1] change (S.F.map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((S.F.map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((S.F.μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom ((((OverColor.forgetLiftApp S.FDiscrete (c i)).inv.hom x) ⊗ₜ[S.k] ((OverColor.forgetLiftApp S.FDiscrete (S.τ (c i))).inv.hom y))))) = _ simp [OverColor.forgetLiftApp] erw [OverColor.forgetLiftAppV_symm_apply, OverColor.forgetLiftAppV_symm_apply S.FDiscrete (S.τ (c i))] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom (((OverColor.lift.obj S.FDiscrete).μ (OverColor.mk fun x => c i) (OverColor.mk fun x => S.τ (c i))).hom (((PiTensorProduct.tprod S.k) fun x_1 => x) ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun x => y))) = _ rw [OverColor.lift.obj_μ_tprod_tmul S.FDiscrete] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom (((OverColor.lift.obj S.FDiscrete).map ((OverColor.mkIso _).hom ⊗ (OverColor.mkIso _).hom)).hom ((PiTensorProduct.tprod S.k) _)) = _ rw [OverColor.lift.map_tprod S.FDiscrete] change ((OverColor.lift.obj S.FDiscrete).map (OverColor.mkSum ((c ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)).inv).hom ((PiTensorProduct.tprod S.k _)) = _ rw [OverColor.lift.map_tprod S.FDiscrete] apply congrArg funext r match r with | Sum.inl 0 => simp [OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor] simp [OverColor.lift.discreteFunctorMapEqIso] rfl | Sum.inr 0 => simp [OverColor.lift.discreteFunctorMapEqIso, OverColor.lift.discreteSumEquiv, HepLean.PiTensorProduct.elimPureTensor] rfl lemma contrFin1Fin1_inv_tmul' {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) (x : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj (S.FDiscrete.obj { as := c ( i) })).obj PUnit.unit)) (y : ↑(((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.obj ((Discrete.functor (Discrete.mk ∘ S.τ) ⋙ S.FDiscrete).obj { as := c ( i) })).obj PUnit.unit)) : (S.contrFin1Fin1 c i j h).inv.hom (x ⊗ₜ[S.k] y) = PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map (eqToHom (by simp [h]))).hom y) := by exact contrFin1Fin1_inv_tmul S c i j h x y /-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ.succ` and a `j` in `Fin n.succ` allowing us to undertake contraction. -/ def contrIso {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ≅ ((OverColor.Discrete.pairτ S.FDiscrete S.τ).obj (Discrete.mk (c i))) ⊗ (OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractTwo i j))).trans <| (S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractTwo i j).symm))).trans <| (S.F.μIso _ _).symm.trans <| by refine tensorIso (S.contrFin1Fin1 c i j h) (S.F.mapIso (OverColor.mkIso (by ext x; simp))) open OverColor lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) = S.τ (c ((Hom.toEquiv σ).symm i)) := by have h1 := Hom.toEquiv_comp_apply σ simp at h1 rw [h1, h1] simp rw [← h] congr simp [HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom] erw [Equiv.apply_symm_apply] rw [HepLean.Fin.succsAbove_predAboveI] erw [Equiv.apply_symm_apply] simp erw [Equiv.apply_eq_iff_eq] exact (Fin.succAbove_ne i j).symm lemma contrIso_comm_aux_1 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : ((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom = (S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom ≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by ext X change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _ rw [← Functor.map_comp, ← Functor.map_comp] erw [extractTwo_finExtractTwo] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply] rfl lemma contrIso_comm_aux_2 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫ (S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom = (S.F.μIso _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom := by have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫ (S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv = (S.F.μIso _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc] erw [CategoryTheory.IsIso.eq_inv_comp ] exact Eq.symm (LaxMonoidalFunctor.μ_natural S.F.toLaxMonoidalFunctor (extractTwoAux' i j σ) (extractTwoAux i j σ)) exact congrArg (λ f => Action.Hom.hom f) h1 lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : ((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.map (S.F.map (extractTwoAux i j σ))).app PUnit.unit ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom = (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom ≫ (S.F.map (extractTwo i j σ)).hom := by change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _ have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) = (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom) ≫ (S.F.map (extractTwo i j σ)) := by rw [← Functor.map_comp, ← Functor.map_comp] apply congrArg rfl exact congrArg (λ f => Action.Hom.hom f) h1 lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ)).hom ≫ (S.contrFin1Fin1 c1 i j h).hom.hom = (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom.hom ≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )).hom := by have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom = (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom ≫ ((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) := by erw [← CategoryTheory.Iso.eq_comp_inv ] rw [CategoryTheory.Category.assoc] erw [← CategoryTheory.Iso.inv_comp_eq ] ext1 apply TensorProduct.ext' intro x y simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp, extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp] trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FDiscrete.map (eqToHom (by simp; erw [perm_contr_cond S h σ]))).hom y) ) · apply congrArg have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c =d ) (h : a = d) : b = c := by rw [← hab, hcd] exact h have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ ) x y refine h1' ?_ ?_ h1 congr apply congrArg funext x match x with | Sum.inl 0 => rfl | Sum.inr 0 => rfl change _ = (S.contrFin1Fin1 c1 i j h).inv.hom ((S.FDiscrete.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k] (S.FDiscrete.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y) rw [contrFin1Fin1_inv_tmul] change ((lift.obj S.FDiscrete).map (extractTwoAux' i j σ)).hom _ = _ rw [lift.map_tprod] apply congrArg funext i match i with | Sum.inl 0 => rfl | Sum.inr 0 => simp [lift.discreteFunctorMapEqIso] change ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y = ((S.FDiscrete.map (eqToHom _)) ≫ S.FDiscrete.map (eqToHom _)).hom y rw [← Functor.map_comp, ← Functor.map_comp] simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply, eqToHom_trans] exact congrArg (λ f => Action.Hom.hom f) h1 def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) := (((Discrete.pairτ S.FDiscrete S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)) )) ⊗ (S.F.map (extractTwo i j σ))) lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫ ((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) = ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) )).hom).hom) ≫ (S.contrIsoComm σ).hom := by erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)] rw [contrIso_comm_aux_3 S σ] rw [contrFin1Fin1_naturality S h σ] simp [contrIsoComm] lemma contrIso_hom_hom {n : ℕ} {c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} : (S.contrIso c1 i j h).hom.hom = (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom ≫ (S.F.μIso (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom ≫ ((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) := by rw [contrIso] simp [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom, extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom] open OverColor in lemma contrIso_comm_map {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map σ) ≫ (S.contrIso c1 i j h).hom = (S.contrIso c ((OverColor.Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫ contrIsoComm S σ := by ext1 simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom, extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom] rw [contrIso_hom_hom] rw [← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc ] rw [contrIso_comm_aux_1 S σ] rw [CategoryTheory.Category.assoc, CategoryTheory.Category.assoc, CategoryTheory.Category.assoc] rw [← CategoryTheory.Category.assoc (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom] rw [contrIso_comm_aux_2 S σ] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, contrIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom, Category.assoc] apply congrArg apply congrArg apply congrArg simpa only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ /-- `contrMap` is a function that takes a natural number `n`, a function `c` from `Fin n.succ.succ` to `S.C`, an index `i` of type `Fin n.succ.succ`, an index `j` of type `Fin n.succ`, and a proof `h` that `c (i.succAbove j) = S.τ (c i)`. It returns a morphism corresponding to the contraction of the `i`th index with the `i.succAbove j` index. --/ def contrMap {n : ℕ} (c : Fin n.succ.succ → S.C) (i : Fin n.succ.succ) (j : Fin n.succ) (h : c (i.succAbove j) = S.τ (c i)) : S.F.obj (OverColor.mk c) ⟶ (OverColor.lift.obj S.FDiscrete).obj (OverColor.mk (c ∘ i.succAbove ∘ j.succAbove)) := (S.contrIso c i j h).hom ≫ (tensorHom (S.contr.app (Discrete.mk (c i))) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom /-- Contraction commutes with `S.F.map σ` on removing corresponding indices from `σ`. -/ lemma contrMap_naturality {n : ℕ} {c c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map σ) ≫ (S.contrMap c1 i j h) = (S.contrMap c ((OverColor.Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)) ≫ (S.F.map (extractTwo i j σ)) := by change (S.F.map σ) ≫ ((S.contrIso c1 i j h).hom ≫ (tensorHom (S.contr.app (Discrete.mk (c1 i))) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) = ((S.contrIso _ _ _ _).hom ≫ (tensorHom (S.contr.app (Discrete.mk _)) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) ≫ _ rw [← CategoryTheory.Category.assoc] rw [contrIso_comm_map S σ] repeat rw [CategoryTheory.Category.assoc] rw [← CategoryTheory.Category.assoc (S.contrIsoComm σ)] apply congrArg rw [← leftUnitor_naturality] repeat rw [← CategoryTheory.Category.assoc] apply congrFun apply congrArg rw [contrIsoComm] rw [← tensor_comp] have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by rfl rw [h1, ← tensor_comp] erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id] erw [CategoryTheory.Category.comp_id] rw [S.contr.naturality] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Monoidal.tensorUnit_obj, Monoidal.tensorUnit_map, Category.comp_id] end TensorStruct /-- A syntax tree for tensor expressions. -/ inductive TensorTree (S : TensorStruct) : ∀ {n : ℕ}, (Fin n → S.C) → Type where /-- A general tensor node. -/ | tensorNode {n : ℕ} {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : TensorTree S c /-- A node consisting of a single vector. -/ | vecNode {c : S.C} (v : S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] /-- A node consisting of a two tensor. -/ | twoNode {c1 c2 : S.C} (v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] /-- A node consisting of a three tensor. -/ | threeNode {c1 c2 c3 : S.C} (v : S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] /-- A general constant node. -/ | constNode {n : ℕ} {c : Fin n → S.C} (T : 𝟙_ (Rep S.k S.G) ⟶ S.F.obj (OverColor.mk c)) : TensorTree S c /-- A constant vector. -/ | constVecNode {c : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c)) : TensorTree S ![c] /-- A constant two tensor (e.g. metric and unit). -/ | constTwoNode {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] /-- A constant three tensor (e.g. Pauli-matrices). -/ | constThreeNode {c1 c2 c3 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] /-- A node corresponding to the addition of two tensors. -/ | add {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c → TensorTree S c /-- A node corresponding to the permutation of indices of a tensor. -/ | perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : TensorTree S c1 | prod {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (t : TensorTree S c) (t1 : TensorTree S c1) : TensorTree S (Sum.elim c c1 ∘ finSumFinEquiv.symm) | smul {n : ℕ} {c : Fin n → S.C} : S.k → TensorTree S c → TensorTree S c /-- The negative of a node. -/ | neg {n : ℕ} {c : Fin n → S.C} : TensorTree S c → TensorTree S c | contr {n : ℕ} {c : Fin n.succ.succ → S.C} : (i : Fin n.succ.succ) → (j : Fin n.succ) → (h : c (i.succAbove j) = S.τ (c i)) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i ∘ Fin.succAbove j) | eval {n : ℕ} {c : Fin n.succ → S.C} : (i : Fin n.succ) → (x : Fin (S.evalNo (c i))) → TensorTree S c → TensorTree S (c ∘ Fin.succAbove i) namespace TensorTree variable {S : TensorStruct} {n : ℕ} {c : Fin n → S.C} (T : TensorTree S c) open MonoidalCategory open TensorProduct /-- The node `twoNode` of a tensor tree, with all arguments explicit. -/ abbrev twoNodeE (S : TensorStruct) (c1 c2 : S.C) (v : (S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)).V) : TensorTree S ![c1, c2] := twoNode v /-- The node `constTwoNodeE` of a tensor tree, with all arguments explicit. -/ abbrev constTwoNodeE (S : TensorStruct) (c1 c2 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : TensorTree S ![c1, c2] := constTwoNode v /-- The node `constThreeNodeE` of a tensor tree, with all arguments explicit. -/ abbrev constThreeNodeE (S : TensorStruct) (c1 c2 c3 : S.C) (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2) ⊗ S.FDiscrete.obj (Discrete.mk c3)) : TensorTree S ![c1, c2, c3] := constThreeNode v /-- The number of nodes in a tensor tree. -/ def size : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → ℕ := fun | tensorNode _ => 1 | vecNode _ => 1 | twoNode _ => 1 | threeNode _ => 1 | constNode _ => 1 | constVecNode _ => 1 | constTwoNode _ => 1 | constThreeNode _ => 1 | add t1 t2 => t1.size + t2.size + 1 | perm _ t => t.size + 1 | neg t => t.size + 1 | smul _ t => t.size + 1 | prod t1 t2 => t1.size + t2.size + 1 | contr _ _ _ t => t.size + 1 | eval _ _ t => t.size + 1 noncomputable section /-- The underlying tensor a tensor tree corresponds to. Note: This function is not fully defined yet. -/ def tensor : ∀ {n : ℕ} {c : Fin n → S.C}, TensorTree S c → S.F.obj (OverColor.mk c) := fun | tensorNode t => t | constTwoNode t => (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (t.hom (1 : S.k)) | add t1 t2 => t1.tensor + t2.tensor | perm σ t => (S.F.map σ).hom t.tensor | neg t => - t.tensor | smul a t => a • t.tensor | prod t1 t2 => (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) | contr i j h t => (S.contrMap _ i j h).hom t.tensor | _ => 0 /-! ## Tensor on different nodes. -/ @[simp] lemma tensoreNode_tensor {c : Fin n → S.C} (T : S.F.obj (OverColor.mk c)) : (tensorNode T).tensor = T := rfl @[simp] lemma constTwoNode_tensor {c1 c2 : S.C} (v : 𝟙_ (Rep S.k S.G) ⟶ S.FDiscrete.obj (Discrete.mk c1) ⊗ S.FDiscrete.obj (Discrete.mk c2)) : (constTwoNode v).tensor = (OverColor.Discrete.pairIsoSep S.FDiscrete).hom.hom (v.hom (1 : S.k)) := rfl lemma prod_tensor {c1 : Fin n → S.C} {c2 : Fin m → S.C} (t1 : TensorTree S c1) (t2 : TensorTree S c2) : (prod t1 t2).tensor = (S.F.map (OverColor.equivToIso finSumFinEquiv).hom).hom ((S.F.μ _ _).hom (t1.tensor ⊗ₜ t2.tensor)) := rfl lemma add_tensor (t1 t2 : TensorTree S c) : (add t1 t2).tensor = t1.tensor + t2.tensor := rfl lemma perm_tensor (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : (perm σ t).tensor = (S.F.map σ).hom t.tensor := rfl lemma contr_tensor {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) : (contr i j h t).tensor = (S.contrMap c i j h).hom t.tensor := rfl lemma neg_tensor (t : TensorTree S c) : (neg t).tensor = - t.tensor := rfl /-! ## Equality of tensors and rewrites. -/ lemma contr_tensor_eq {n : ℕ} {c : Fin n.succ.succ → S.C} {T1 T2 : TensorTree S c} (h : T1.tensor = T2.tensor) {i : Fin n.succ.succ} {j : Fin n.succ} {h' : c (i.succAbove j) = S.τ (c i)} : (contr i j h' T1).tensor = (contr i j h' T2).tensor := by simp only [Nat.succ_eq_add_one, contr_tensor] rw [h] lemma prod_tensor_eq_fst {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 T1' : TensorTree S c} { T2 : TensorTree S c1} (h : T1.tensor = T1'.tensor) : (prod T1 T2).tensor = (prod T1' T2).tensor := by simp [prod_tensor] rw [h] lemma prod_tensor_eq_snd {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} {T1 : TensorTree S c} {T2 T2' : TensorTree S c1} (h : T2.tensor = T2'.tensor) : (prod T1 T2).tensor = (prod T1 T2').tensor := by simp [prod_tensor] rw [h] /-! ## Negation lemmas We define the simp lemmas here so that negation is always moved to the top of the tree. -/ @[simp] lemma neg_neg (t : TensorTree S c) : (neg (neg t)).tensor = t.tensor := by simp only [neg_tensor, _root_.neg_neg] @[simp] lemma neg_fst_prod {c1 : Fin n → S.C} {c2 : Fin m → S.C} (T1 : TensorTree S c1) (T2 : TensorTree S c2) : (prod (neg T1) T2).tensor = (neg (prod T1 T2)).tensor := by simp only [prod_tensor, Functor.id_obj, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, neg_tensor, neg_tmul, map_neg] @[simp] lemma neg_snd_prod {c1 : Fin n → S.C} {c2 : Fin m → S.C} (T1 : TensorTree S c1) (T2 : TensorTree S c2) : (prod T1 (neg T2)).tensor = (neg (prod T1 T2)).tensor := by simp only [prod_tensor, Functor.id_obj, Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, neg_tensor, tmul_neg, map_neg] @[simp] lemma neg_contr {n : ℕ} {c : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = S.τ (c i)} (t : TensorTree S c) : (contr i j h (neg t)).tensor = (neg (contr i j h t)).tensor := by simp only [Nat.succ_eq_add_one, contr_tensor, neg_tensor, map_neg] lemma neg_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) (t : TensorTree S c) : (perm σ (neg t)).tensor = (neg (perm σ t)).tensor := by simp only [perm_tensor, neg_tensor, map_neg] /-! ## Permutation lemmas -/ open OverColor /-- Permuting indices, and then contracting is equivalent to contracting and then permuting, once care is taking about ensuring one is contracting the same idices. -/ lemma perm_contr {n : ℕ} {c : Fin n.succ.succ.succ → S.C} {c1 : Fin n.succ.succ.succ → S.C} {i : Fin n.succ.succ.succ} {j : Fin n.succ.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (contr i j h (perm σ t)).tensor = (perm (extractTwo i j σ) (contr ((Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ) t)).tensor := by rw [contr_tensor, perm_tensor, perm_tensor] change ((S.F.map σ) ≫ S.contrMap c1 i j h).hom t.tensor = _ rw [S.contrMap_naturality σ] rfl end end TensorTree end