/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Logic.Function.CompTypeclasses import Mathlib.Data.Real.Basic import Mathlib.Analysis.Normed.Field.Basic import Mathlib.LinearAlgebra.Matrix.Trace /-! # Lorentz Tensors In this file we define real Lorentz tensors. We implicitly follow the definition of a modular operad. This will relation should be made explicit in the future. ## References -- For modular operads see: [Raynor][raynor2021graphical] -/ /-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/ /-! TODO: Generalize to maps into Lorentz tensors. -/ /-! ## Real Lorentz tensors -/ /-- The possible `colors` of an index for a RealLorentzTensor. There are two possiblities, `up` and `down`. -/ inductive RealLorentzTensor.Colors where | up : RealLorentzTensor.Colors | down : RealLorentzTensor.Colors /-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`. -/ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type := match μ with | RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d | RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d) | RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d) /-- An `IndexValue` is a set of actual values an index can take. e.g. for a 3-tensor (0, 1, 2). -/ @[simp] def RealLorentzTensor.IndexValue {X : Type} (d : ℕ) (c : X → RealLorentzTensor.Colors) : Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x) /-- A Lorentz Tensor defined by its coordinate map. -/ structure RealLorentzTensor (d : ℕ) (X : Type) where /-- The color associated to each index of the tensor. -/ color : X → RealLorentzTensor.Colors /-- The coordinate map for the tensor. -/ coord : RealLorentzTensor.IndexValue d color → ℝ namespace RealLorentzTensor open Matrix universe u1 variable {d : ℕ} {X Y Z : Type} /-! ## Some equivalences of types These come in use casting Lorentz tensors. There is likely a better way to deal with these castings. -/ /-- An equivalence from `Empty ⊕ PUnit.{1}` to `Empty ⊕ Σ _ : Fin 1, PUnit`. -/ def equivPUnitToSigma : (Empty ⊕ PUnit.{1}) ≃ (Empty ⊕ Σ _ : Fin 1, PUnit) where toFun x := match x with | Sum.inr x => Sum.inr ⟨0, x⟩ invFun x := match x with | Sum.inr ⟨0, x⟩ => Sum.inr x left_inv x := match x with | Sum.inr _ => rfl right_inv x := match x with | Sum.inr ⟨0, _⟩ => rfl /-! ## Colors -/ /-- The involution acting on colors. -/ def τ : Colors → Colors | Colors.up => Colors.down | Colors.down => Colors.up /-- The map τ is an involution. -/ @[simp] lemma τ_involutive : Function.Involutive τ := by intro x cases x <;> rfl /-- The color associated with an element of `x ∈ X` for a tensor `T`. -/ def ch {X : Type} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x /-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/ def dualColorsIndex {d : ℕ} {μ : RealLorentzTensor.Colors}: ColorsIndex d μ ≃ ColorsIndex d (τ μ) where toFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x invFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x left_inv x := by cases μ <;> rfl right_inv x := by cases μ <;> rfl /-- An equivalence of `ColorsIndex` types given an equality of a colors. -/ def castColorsIndex {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) : ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ := Equiv.cast (by rw [h]) /-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/ def congrColorsDual {μ ν : Colors} (h : μ = τ ν) : ColorsIndex d μ ≃ ColorsIndex d ν := (castColorsIndex h).trans dualColorsIndex.symm lemma congrColorsDual_symm {μ ν : Colors} (h : μ = τ ν) : (congrColorsDual h).symm = @congrColorsDual d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by match μ, ν with | Colors.up, Colors.down => rfl | Colors.down, Colors.up => rfl lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ := (Function.Involutive.eq_iff τ_involutive).mp h.symm /-! ## Index values -/ /-- An equivalence of Index values from an equality of color maps. -/ def castIndexValue {X : Type} {T S : X → Colors} (h : T = S) : IndexValue d T ≃ IndexValue d S where toFun i := (fun μ => castColorsIndex (congrFun h μ) (i μ)) invFun i := (fun μ => (castColorsIndex (congrFun h μ)).symm (i μ)) left_inv i := by simp right_inv i := by simp lemma indexValue_eq {T₁ T₂ : X → RealLorentzTensor.Colors} (d : ℕ) (h : T₁ = T₂) : IndexValue d T₁ = IndexValue d T₂ := pi_congr fun a => congrArg (ColorsIndex d) (congrFun h a) /-! ## Extensionality -/ lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexValue_eq d h)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' subst h' rfl lemma ext' {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = fun i => T₂.coord (castIndexValue h i)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' rfl /-! ## Congruence -/ /-- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism between `X` and `Y`. -/ def congrSetIndexValue (d : ℕ) (f : X ≃ Y) (i : X → Colors) : IndexValue d i ≃ IndexValue d (i ∘ f.symm) := Equiv.piCongrLeft' _ f /-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/ @[simps!] def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where color := T.color ∘ f.symm coord := T.coord ∘ (congrSetIndexValue d f T.color).symm lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) : congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by apply ext (by rfl) have h1 : congrSetIndexValue d (f.trans g) T.color = (congrSetIndexValue d f T.color).trans (congrSetIndexValue d g $ Equiv.piCongrLeft' (fun _ => Colors) f T.color) := by exact Equiv.coe_inj.mp rfl simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexValue, Equiv.symm_trans_apply, h1, Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] rfl /-- An equivalence of Tensors given an equivalence of underlying sets. -/ @[simps!] def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where toFun := congrSetMap f invFun := congrSetMap f.symm left_inv T := by rw [congrSetMap_trans, Equiv.self_trans_symm] rfl right_inv T := by rw [congrSetMap_trans, Equiv.symm_trans_self] rfl lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) : (@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by refine Equiv.coe_inj.mp ?_ funext T exact congrSetMap_trans f g T lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := rfl /-! ## Sums -/ /-- The sum of two color maps. -/ def sumElimIndexColor (Tc : X → Colors) (Sc : Y → Colors) : (X ⊕ Y) → Colors := Sum.elim Tc Sc /-- The symmetry property on `sumElimIndexColor`. -/ lemma sumElimIndexColor_symm (Tc : X → Colors) (Sc : Y → Colors) : sumElimIndexColor Tc Sc = Equiv.piCongrLeft' _ (Equiv.sumComm X Y).symm (sumElimIndexColor Sc Tc) := by ext1 x simp_all only [Equiv.piCongrLeft'_apply, Equiv.sumComm_symm, Equiv.sumComm_apply] cases x <;> rfl /-- The sum of two index values for different color maps. -/ @[simp] def sumElimIndexValue {X Y : Type} {TX : X → Colors} {TY : Y → Colors} (i : IndexValue d TX) (j : IndexValue d TY) : IndexValue d (sumElimIndexColor TX TY) := fun c => match c with | Sum.inl x => i x | Sum.inr x => j x /-- The projection of an index value on a sum of color maps to its left component. -/ def inlIndexValue {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : IndexValue d Tc := fun x => i (Sum.inl x) /-- The projection of an index value on a sum of color maps to its right component. -/ def inrIndexValue {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : IndexValue d Sc := fun y => i (Sum.inr y) /-- An equivalence between index values formed by commuting sums. -/ def sumCommIndexValue {X Y : Type} (Tc : X → Colors) (Sc : Y → Colors) : IndexValue d (sumElimIndexColor Tc Sc) ≃ IndexValue d (sumElimIndexColor Sc Tc) := (congrSetIndexValue d (Equiv.sumComm X Y) (sumElimIndexColor Tc Sc)).trans (castIndexValue (sumElimIndexColor_symm Sc Tc).symm) lemma sumCommIndexValue_inlIndexValue {X Y : Type} {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d <| sumElimIndexColor Tc Sc) : inlIndexValue (sumCommIndexValue Tc Sc i) = inrIndexValue i := rfl lemma sumCommIndexValue_inrIndexValue {X Y : Type} {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d <| sumElimIndexColor Tc Sc) : inrIndexValue (sumCommIndexValue Tc Sc i) = inlIndexValue i := rfl /-- Equivalence between sets of `RealLorentzTensor` formed by commuting sums. -/ @[simps!] def sumComm : RealLorentzTensor d (X ⊕ Y) ≃ RealLorentzTensor d (Y ⊕ X) := congrSet (Equiv.sumComm X Y) /-! ## Marked Lorentz tensors To define contraction and multiplication of Lorentz tensors we need to mark indices. -/ /-- A `RealLorentzTensor` with `n` marked indices. -/ def Marked (d : ℕ) (X : Type) (n : ℕ) : Type := RealLorentzTensor d (X ⊕ Σ _ : Fin n, PUnit) namespace Marked variable {n m : ℕ} /-- The marked point. -/ def markedPoint (X : Type) (i : Fin n) : (X ⊕ Σ _ : Fin n, PUnit) := Sum.inr ⟨i, PUnit.unit⟩ /-- The colors of unmarked indices. -/ def unmarkedColor (T : Marked d X n) : X → Colors := T.color ∘ Sum.inl /-- The colors of marked indices. -/ def markedColor (T : Marked d X n) : (Σ _ : Fin n, PUnit) → Colors := T.color ∘ Sum.inr /-- The index values restricted to unmarked indices. -/ def UnmarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.unmarkedColor /-- The index values restricted to marked indices. -/ def MarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.markedColor lemma sumElimIndexColor_of_marked (T : Marked d X n) : sumElimIndexColor T.unmarkedColor T.markedColor = T.color := by ext1 x cases' x <;> rfl /-- Contruction of marked index values for the case of 1 marked index. -/ def oneMarkedIndexValue (T : Marked d X 1) (x : ColorsIndex d (T.color (markedPoint X 0))) : T.MarkedIndexValue := fun i => match i with | ⟨0, PUnit.unit⟩ => x /-- Contruction of marked index values for the case of 2 marked index. -/ def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0))) (y : ColorsIndex d <| T.color <| markedPoint X 1) : T.MarkedIndexValue := fun i => match i with | ⟨0, PUnit.unit⟩ => x | ⟨1, PUnit.unit⟩ => y /-- An equivalence of types used to turn the first marked index into an unmarked index. -/ def unmarkFirstSet (X : Type) (n : ℕ) : (X ⊕ Σ _ : Fin n.succ, PUnit) ≃ ((X ⊕ PUnit) ⊕ Σ _ : Fin n, PUnit) where toFun x := match x with | Sum.inl x => Sum.inl (Sum.inl x) | Sum.inr ⟨0, PUnit.unit⟩ => Sum.inl (Sum.inr PUnit.unit) | Sum.inr ⟨⟨Nat.succ i, h⟩, PUnit.unit⟩ => Sum.inr ⟨⟨i, Nat.succ_lt_succ_iff.mp h⟩, PUnit.unit⟩ invFun x := match x with | Sum.inl (Sum.inl x) => Sum.inl x | Sum.inl (Sum.inr PUnit.unit) => Sum.inr ⟨0, PUnit.unit⟩ | Sum.inr ⟨⟨i, h⟩, PUnit.unit⟩ => Sum.inr ⟨⟨Nat.succ i, Nat.succ_lt_succ h⟩, PUnit.unit⟩ left_inv x := by match x with | Sum.inl x => rfl | Sum.inr ⟨0, PUnit.unit⟩ => rfl | Sum.inr ⟨⟨Nat.succ i, h⟩, PUnit.unit⟩ => rfl right_inv x := by match x with | Sum.inl (Sum.inl x) => rfl | Sum.inl (Sum.inr PUnit.unit) => rfl | Sum.inr ⟨⟨i, h⟩, PUnit.unit⟩ => rfl /-- Unmark the first marked index of a marked thensor. -/ def unmarkFirst {X : Type} : Marked d X n.succ ≃ Marked d (X ⊕ PUnit) n := congrSet (unmarkFirstSet X n) end Marked /-! ## Multiplication -/ open Marked /-- The contraction of the marked indices of two tensors each with one marked index, which is dual to the others. The contraction is done via `φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/ @[simps!] def mul {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) : RealLorentzTensor d (X ⊕ Y) where color := sumElimIndexColor T.unmarkedColor S.unmarkedColor coord := fun i => ∑ x, T.coord (castIndexValue T.sumElimIndexColor_of_marked $ sumElimIndexValue (inlIndexValue i) (T.oneMarkedIndexValue x)) * S.coord (castIndexValue S.sumElimIndexColor_of_marked $ sumElimIndexValue (inrIndexValue i) (S.oneMarkedIndexValue $ congrColorsDual h x)) /-- Multiplication is well behaved with regard to swapping tensors. -/ lemma sumComm_mul {X Y : Type} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) : sumComm (mul T S h) = mul S T (color_eq_dual_symm h) := by refine ext' (sumElimIndexColor_symm S.unmarkedColor T.unmarkedColor).symm ?_ change (mul T S h).coord ∘ (congrSetIndexValue d (Equiv.sumComm X Y) (mul T S h).color).symm = _ rw [Equiv.comp_symm_eq] funext i simp only [mul_coord, IndexValue, mul_color, Function.comp_apply, sumComm_apply_color] erw [sumCommIndexValue_inlIndexValue, sumCommIndexValue_inrIndexValue, ← Equiv.sum_comp (congrColorsDual h)] refine Fintype.sum_congr _ _ (fun a => ?_) rw [mul_comm] repeat apply congrArg rw [← congrColorsDual_symm h] exact (Equiv.apply_eq_iff_eq_symm_apply <| congrColorsDual h).mp rfl /-! TODO: Following the ethos of modular operads, prove properties of multiplication. -/ /-! TODO: Use `mul` to generalize to any pair of marked index. -/ /-! ## Contraction of indices -/ /-- The contraction of the marked indices in a tensor with two marked indices. -/ def contr {X : Type} (T : Marked d X 2) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (T.markedColor ⟨1, PUnit.unit⟩)) : RealLorentzTensor d X where color := T.unmarkedColor coord := fun i => ∑ x, T.coord (castIndexValue T.sumElimIndexColor_of_marked $ sumElimIndexValue i $ T.twoMarkedIndexValue x $ congrColorsDual h x) /-! TODO: Following the ethos of modular operads, prove properties of contraction. -/ /-! TODO: Use `contr` to generalize to any pair of marked index. -/ /-! # Tensors from reals, vectors and matrices Note that that these definitions are not equivariant with respect to an action of the Lorentz group. They are provided for constructive purposes. -/ /-- A 0-tensor from a real number. -/ def ofReal (d : ℕ) (r : ℝ) : RealLorentzTensor d Empty where color := fun _ => Colors.up coord := fun _ => r /-- A marked 1-tensor with a single up index constructed from a vector. Note: This is not the same as rising indices on `ofVecDown`. -/ def ofVecUp {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) : Marked d Empty 1 where color := fun _ => Colors.up coord := fun i => v <| i <| Sum.inr <| ⟨0, PUnit.unit⟩ /-- A marked 1-tensor with a single down index constructed from a vector. Note: This is not the same as lowering indices on `ofVecUp`. -/ def ofVecDown {d : ℕ} (v : Fin 1 ⊕ Fin d → ℝ) : Marked d Empty 1 where color := fun _ => Colors.down coord := fun i => v <| i <| Sum.inr <| ⟨0, PUnit.unit⟩ /-- A tensor with two up indices constructed from a matrix. Note: This is not the same as rising or lowering indices on other `ofMat...`. -/ def ofMatUpUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : Marked d Empty 2 where color := fun _ => Colors.up coord := fun i => m (i (Sum.inr ⟨0, PUnit.unit⟩)) (i (Sum.inr ⟨1, PUnit.unit⟩)) /-- A tensor with two down indices constructed from a matrix. Note: This is not the same as rising or lowering indices on other `ofMat...`. -/ def ofMatDownDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : Marked d Empty 2 where color := fun _ => Colors.down coord := fun i => m (i (Sum.inr ⟨0, PUnit.unit⟩)) (i (Sum.inr ⟨1, PUnit.unit⟩)) /-- A marked 2-tensor with the first index up and the second index down. Note: This is not the same as rising or lowering indices on other `ofMat...`. -/ @[simps!] def ofMatUpDown {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : Marked d Empty 2 where color := fun i => match i with | Sum.inr ⟨0, PUnit.unit⟩ => Colors.up | Sum.inr ⟨1, PUnit.unit⟩ => Colors.down coord := fun i => m (i (Sum.inr ⟨0, PUnit.unit⟩)) (i (Sum.inr ⟨1, PUnit.unit⟩)) /-- A marked 2-tensor with the first index down and the second index up. Note: This is not the same as rising or lowering indices on other `ofMat...`. -/ def ofMatDownUp {d : ℕ} (m : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : Marked d Empty 2 where color := fun i => match i with | Sum.inr ⟨0, PUnit.unit⟩ => Colors.down | Sum.inr ⟨1, PUnit.unit⟩ => Colors.up coord := fun i => m (i (Sum.inr ⟨0, PUnit.unit⟩)) (i (Sum.inr ⟨1, PUnit.unit⟩)) /-- Contracting the indices of `ofMatUpDown` returns the trace of the matrix. -/ lemma contr_ofMatUpDown_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : contr (ofMatUpDown M) (by rfl) = ofReal d M.trace := by refine ext' ?_ ?_ · funext i exact Empty.elim i · funext i simp only [Fin.isValue, contr, IndexValue, Equiv.cast_apply, trace, diag_apply, ofReal, Finset.univ_unique, Fin.default_eq_zero, Finset.sum_singleton] apply Finset.sum_congr rfl intro x _ rfl /-- Contracting the indices of `ofMatDownUp` returns the trace of the matrix. -/ lemma contr_ofMatDownUp_eq_trace {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) : contr (ofMatDownUp M) (by rfl) = ofReal d M.trace := by refine ext' ?_ ?_ · funext i exact Empty.elim i · funext i rfl /-- Multiplying `ofVecUp` with `ofVecDown` gives the dot product. -/ @[simp] lemma mul_ofVecUp_ofVecDown_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) : congrSet (@Equiv.equivEmpty (Empty ⊕ Empty) instIsEmptySum) (mul (ofVecUp v₁) (ofVecDown v₂) (by rfl)) = ofReal d (v₁ ⬝ᵥ v₂) := by refine ext' ?_ ?_ · funext i exact Empty.elim i · funext i rfl /-- Multiplying `ofVecDown` with `ofVecUp` gives the dot product. -/ @[simp] lemma mul_ofVecDown_ofVecUp_eq_dot_prod {d : ℕ} (v₁ v₂ : Fin 1 ⊕ Fin d → ℝ) : congrSet (Equiv.equivEmpty (Empty ⊕ Empty)) (mul (ofVecDown v₁) (ofVecUp v₂) rfl) = ofReal d (v₁ ⬝ᵥ v₂) := by refine ext' ?_ ?_ · funext i exact Empty.elim i · funext i rfl lemma mul_ofMatUpDown_ofVecUp_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) (v : Fin 1 ⊕ Fin d → ℝ) : congrSet ((Equiv.sumEmpty (Empty ⊕ PUnit.{1}) Empty).trans equivPUnitToSigma) (mul (unmarkFirst $ ofMatUpDown M) (ofVecUp v) rfl) = ofVecUp (M *ᵥ v) := by refine ext' ?_ ?_ · funext i simp only [Nat.succ_eq_add_one, Nat.reduceAdd, congrSet_apply_color, mul_color, Equiv.symm_symm] fin_cases i rfl · funext i rfl lemma mul_ofMatDownUp_ofVecDown_eq_mulVec {d : ℕ} (M : Matrix (Fin 1 ⊕ Fin d) (Fin 1 ⊕ Fin d) ℝ) (v : Fin 1 ⊕ Fin d → ℝ) : congrSet ((Equiv.sumEmpty (Empty ⊕ PUnit.{1}) Empty).trans equivPUnitToSigma) (mul (unmarkFirst $ ofMatDownUp M) (ofVecDown v) rfl) = ofVecDown (M *ᵥ v) := by refine ext' ?_ ?_ · funext i simp only [Nat.succ_eq_add_one, Nat.reduceAdd, congrSet_apply_color, mul_color, Equiv.symm_symm] fin_cases i rfl · funext i rfl /-! ## Rising and lowering indices Rising or lowering an index corresponds to changing the color of that index. -/ /-! TODO: Define the rising and lowering of indices using contraction with the metric. -/ /-! ## Action of the Lorentz group -/ /-! TODO: Define the action of the Lorentz group on the sets of Tensors. -/ /-! ## Graphical species and Lorentz tensors -/ /-! TODO: From Lorentz tensors graphical species. -/ /-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/ end RealLorentzTensor