/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Mathematics.List /-! # List lemmas -/ namespace HepLean.List open Fin open HepLean variable {n : Nat} lemma insertIdx_map {I J : Type} (f : I → J) : (i : ℕ) → (r : List I) → (r0 : I) → (List.insertIdx i r0 r).map f = List.insertIdx i (f r0) (r.map f) | 0, [], r0 => by simp | n+1, [], r0 => by simp | 0, a::as, r0 => by simp | n+1, a::as, r0 => by simp only [List.insertIdx_succ_cons, List.map_cons, List.cons.injEq, true_and] exact insertIdx_map f n as r0 lemma eraseIdx_sorted {I : Type} (le : I → I → Prop) : (r : List I) → (n : ℕ) → List.Sorted le r → List.Sorted le (r.eraseIdx n) | [], _, _ => by simp | a::as, 0, h => by simp only [List.eraseIdx] simp only [List.sorted_cons] at h exact h.2 | a::as, n+1, h => by simp only [List.eraseIdx_cons_succ, List.sorted_cons] simp only [List.sorted_cons] at h refine And.intro ?_ (eraseIdx_sorted le as n h.2) intro b hb refine h.1 _ ?_ exact List.mem_of_mem_eraseIdx hb lemma mem_eraseIdx_nodup {I : Type} (i : I) : (l : List I) → (n : ℕ) → (hn : n < l.length) → (h : List.Nodup l) → i ∈ l.eraseIdx n ↔ i ∈ l ∧ i ≠ l[n] | [], _, _, _ => by simp | a1 :: as, 0, _, h => by simp only [List.eraseIdx_zero, List.tail_cons, List.mem_cons, List.getElem_cons_zero, ne_eq] by_cases hi : i = a1 · subst hi simp only [List.nodup_cons] at h simp [h] · simp [hi] | a1 :: as, n+1, hn, h => by simp only [List.eraseIdx_cons_succ, List.mem_cons, List.getElem_cons_succ, ne_eq] simp only [List.nodup_cons] at h rw [mem_eraseIdx_nodup i as n (Nat.succ_lt_succ_iff.mp hn) h.2] simp_all only [ne_eq] obtain ⟨left, right⟩ := h apply Iff.intro · intro a cases a with | inl h => subst h simp_all only [or_false, true_and] apply Aesop.BuiltinRules.not_intro intro a simp_all only [List.getElem_mem, not_true_eq_false] | inr h_1 => simp_all only [or_true, not_false_eq_true, and_self] · intro a simp_all only [not_false_eq_true, and_true] lemma insertIdx_eq_take_drop {I : Type} (i : I) : (r : List I) → (n : Fin r.length.succ) → List.insertIdx n i r = List.take n r ++ i :: r.drop n | [], 0 => by simp | a :: as, 0 => by simp | a :: as, ⟨n + 1, h⟩ => by simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.drop_succ_cons, List.cons_append, List.cons.injEq, true_and] exact insertIdx_eq_take_drop i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩ @[simp] lemma insertIdx_length_fin {I : Type} (i : I) : (r : List I) → (n : Fin r.length.succ) → (List.insertIdx n i r).length = r.length.succ | [], 0 => by simp | a :: as, 0 => by simp | a :: as, ⟨n + 1, h⟩ => by simp only [List.insertIdx_succ_cons, List.length_cons, Nat.succ_eq_add_one, add_left_inj] exact insertIdx_length_fin i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩ @[simp] lemma insertIdx_getElem_fin {I : Type} (i : I) : (r : List I) → (k : Fin r.length.succ) → (m : Fin r.length) → (List.insertIdx k i r)[(k.succAbove m).val] = r[m.val] | [], 0, m => by exact Fin.elim0 m | a :: as, 0, m => by simp | a :: as, ⟨n + 1, h⟩, ⟨0, h0⟩ => by simp [Fin.succAbove, Fin.lt_def] | a :: as, ⟨n + 1, h⟩, ⟨m+1, hm⟩ => by simp only [List.insertIdx_succ_cons, List.length_cons, Nat.succ_eq_add_one, List.getElem_cons_succ] conv_rhs => rw [← insertIdx_getElem_fin i as ⟨n, Nat.succ_lt_succ_iff.mp h⟩ ⟨m, Nat.lt_of_succ_lt_succ hm⟩] simp only [Fin.succAbove, Fin.castSucc_mk, Fin.lt_def, add_lt_add_iff_right, Fin.succ_mk, Nat.succ_eq_add_one] split · simp_all only [List.getElem_cons_succ] · simp_all only [List.getElem_cons_succ] lemma insertIdx_eraseIdx_fin {I : Type} : (r : List I) → (k : Fin r.length) → (List.eraseIdx r k).insertIdx k r[k] = r | [], k => by exact Fin.elim0 k | a :: as, ⟨0, h⟩ => by simp | a :: as, ⟨n + 1, h⟩ => by simp only [List.length_cons, Fin.getElem_fin, List.getElem_cons_succ, List.eraseIdx_cons_succ, List.insertIdx_succ_cons, List.cons.injEq, true_and] exact insertIdx_eraseIdx_fin as ⟨n, Nat.lt_of_succ_lt_succ h⟩ lemma insertIdx_length_fst_append {I : Type} (φ : I) : (φs φs' : List I) → List.insertIdx φs.length φ (φs ++ φs') = (φs ++ φ :: φs') | [], φs' => by simp | φ' :: φs, φs' => by simp only [List.length_cons, List.cons_append, List.insertIdx_succ_cons, List.cons.injEq, true_and] exact insertIdx_length_fst_append φ φs φs' lemma get_eq_insertIdx_succAbove {I : Type} (i : I) (r : List I) (k : Fin r.length.succ) : r.get = (List.insertIdx k i r).get ∘ (finCongr (insertIdx_length_fin i r k).symm) ∘ k.succAbove := by funext i simp lemma take_insert_same {I : Type} (i : I) : (n : ℕ) → (r : List I) → List.take n (List.insertIdx n i r) = List.take n r | 0, _ => by simp | _+1, [] => by simp | n+1, a::as => by simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and] exact take_insert_same i n as lemma take_eraseIdx_same {I : Type} : (n : ℕ) → (r : List I) → List.take n (List.eraseIdx r n) = List.take n r | 0, _ => by simp | _+1, [] => by simp | n+1, a::as => by simp only [List.eraseIdx_cons_succ, List.take_succ_cons, List.cons.injEq, true_and] exact take_eraseIdx_same n as lemma drop_eraseIdx_succ {I : Type} : (n : ℕ) → (r : List I) → (hn : n < r.length) → r[n] :: List.drop n (List.eraseIdx r n) = List.drop n r | 0, _, _=> by simp only [List.eraseIdx_zero, List.drop_tail, zero_add, List.drop_one, List.drop_zero] rw [@List.getElem_zero] exact List.head_cons_tail _ _ | n+1, [], hn => by simp at hn | n+1, a::as, hn => by simp only [List.getElem_cons_succ, List.eraseIdx_cons_succ, List.drop_succ_cons] refine drop_eraseIdx_succ n as _ lemma take_insert_gt {I : Type} (i : I) : (n m : ℕ) → (h : n < m) → (r : List I) → List.take n (List.insertIdx m i r) = List.take n r | 0, 0, _, _ => by simp | 0, m + 1, _, _ => by simp | n+1, m + 1, _, [] => by simp | n+1, m + 1, h, a::as => by simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and] refine take_insert_gt i n m (Nat.succ_lt_succ_iff.mp h) as lemma take_insert_let {I : Type} (i : I) : (n m : ℕ) → (h : m ≤ n) → (r : List I) → (hm : m ≤ r.length) → (List.take (n + 1) (List.insertIdx m i r)).Perm (i :: List.take n r) | 0, 0, h, _, _ => by simp | m + 1, 0, h, r, _ => by simp | n + 1, m + 1, h, [], hm => by simp at hm | n + 1, m + 1, h, a::as, hm => by simp only [List.insertIdx_succ_cons, List.take_succ_cons] have hp : (i :: a :: List.take n as).Perm (a :: i :: List.take n as) := by exact List.Perm.swap a i (List.take n as) refine List.Perm.trans ?_ hp.symm refine List.Perm.cons a ?_ exact take_insert_let i n m (Nat.le_of_succ_le_succ h) as (Nat.le_of_succ_le_succ hm) end HepLean.List