/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.StandardModel.Basic /-! # The Pati-Salam Model The Pati-Salam model is a petite unified theory that unifies the Standard Model gauge group into `SU(4) x SU(2) x SU(2)`. This file currently contains informal-results about the Pati-Salam group. -/ namespace PatiSalam /-! ## The Pati-Salam gauge group. -/ /-- The gauge group of the Pati-Salam model (unquotiented by ℤ₂), i.e., `SU(4) × SU(2) × SU(2)`. -/ informal_definition GaugeGroupI where deps := [] /-- The homomorphism of the Standard Model gauge group into the Pati-Salam gauge group, i.e., the group homomorphism `SU(3) × SU(2) × U(1) → SU(4) × SU(2) × SU(2)` taking `(h, g, α)` to `(blockdiag (α h, α ^ (-3)), g, diag (α ^ 3, α ^(-3))`. See page 54 of https://math.ucr.edu/home/baez/guts.pdf -/ informal_definition inclSM where deps := [``GaugeGroupI, ``StandardModel.GaugeGroupI] /-- The kernel of the map `inclSM` is equal to the subgroup `StandardModel.gaugeGroupℤ₃SubGroup`. See footnote 10 of https://arxiv.org/pdf/2201.07245 -/ informal_lemma inclSM_ker where deps := [``inclSM, ``StandardModel.gaugeGroupℤ₃SubGroup] /-- The group embedding from `StandardModel.GaugeGroupℤ₃` to `GaugeGroupI` induced by `inclSM` by quotienting by the kernel `inclSM_ker`. -/ informal_definition embedSMℤ₃ where deps := [``inclSM, ``StandardModel.GaugeGroupℤ₃, ``GaugeGroupI, ``inclSM_ker] /-- The equivalence between `GaugeGroupI` and `Spin(6) × Spin(4)`. -/ informal_definition gaugeGroupISpinEquiv where deps := [``GaugeGroupI] /-- The ℤ₂-subgroup of the un-quotiented gauge group which acts trivially on all particles in the standard model, i.e., the ℤ₂-subgroup of `GaugeGroupI` with the non-trivial element `(-1, -1, -1)`. See https://math.ucr.edu/home/baez/guts.pdf -/ informal_definition gaugeGroupℤ₂SubGroup where deps := [``GaugeGroupI] /-- The gauge group of the Pati-Salam model with a ℤ₂ quotient, i.e., the quotient of `GaugeGroupI` by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`. See https://math.ucr.edu/home/baez/guts.pdf -/ informal_definition GaugeGroupℤ₂ where deps := [``GaugeGroupI, ``gaugeGroupℤ₂SubGroup] /-- The group `StandardModel.gaugeGroupℤ₆SubGroup` under the homomorphism `embedSM` factors through the subgroup `gaugeGroupℤ₂SubGroup`. -/ informal_lemma sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup where deps := [``inclSM, ``StandardModel.gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup] /-- The group homomorphism from `StandardModel.GaugeGroupℤ₆` to `GaugeGroupℤ₂` induced by `embedSM`. -/ informal_definition embedSMℤ₆Toℤ₂ where deps := [``inclSM, ``StandardModel.GaugeGroupℤ₆, ``GaugeGroupℤ₂, ``sm_ℤ₆_factor_through_gaugeGroupℤ₂SubGroup] end PatiSalam