/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Lorentz.ComplexTensor.PauliMatrices.Basic /-! ## Pauli matrices and the basis of complex Lorentz tensors -/ open CategoryTheory open MonoidalCategory open Matrix open Complex open IndexNotation open TensorTree open OverColor.Discrete noncomputable section namespace complexLorentzTensor open Fermion /-! ## Expanding pauliContr in a basis. -/ /-- The expansion of the Pauli matrices `σ^μ^a^{dot a}` in terms of basis vectors. -/ lemma pauliContr_in_basis : {pauliContr | μ α β}ᵀ.tensor = basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1) + basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0) - I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1) + I • basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0) + basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0) - basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1) := by rw [tensorNode_pauliContr] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constThreeNode_tensor, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Fin.isValue] erw [PauliMatrix.asConsTensor_apply_one, PauliMatrix.asTensor_expand] simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Action.instMonoidalCategory_tensorObj_V, Fin.isValue, map_sub, map_add, _root_.map_smul] congr 1 congr 1 congr 1 congr 1 congr 1 congr 1 congr 1 all_goals erw [tripleIsoSep_tmul, basisVector] apply congrArg try apply congrArg funext i match i with | (0 : Fin 3) => simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom, cons_val_zero, Fin.cases_zero] change _ = Lorentz.complexContrBasisFin4 _ simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply] rfl | (1 : Fin 3) => rfl | (2 : Fin 3) => rfl lemma pauliContr_basis_expand_tree : {pauliContr | μ α β}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| TensorTree.add (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 0 | 1 => 1 | 2 => 1))) <| TensorTree.add (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 0 | 2 => 1))) <| TensorTree.add (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 1 | 1 => 1 | 2 => 0))) <| TensorTree.add (smul (-I) (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <| TensorTree.add (smul I (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <| TensorTree.add (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 0 | 2 => 0))) <| (smul (-1) (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by rw [pauliContr_in_basis] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl /-- The map to colors one gets when contracting with Pauli matrices on the right. -/ abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) : (TensorTree.prod t (tensorNode pauliContr)).tensor = (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add (((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add ((TensorTree.smul (-I) ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add ((TensorTree.smul I ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add ((t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add (TensorTree.smul (-1) (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by rw [prod_tensor_eq_snd <| pauliContr_basis_expand_tree] rw [prod_add _ _ _] rw [add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] /- Moving smuls. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_smul _ _ _] lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) : (contr i j h (TensorTree.prod t (tensorNode pauliContr))).tensor = ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add ((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add ((TensorTree.smul I (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add (TensorTree.smul (-1) (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _] /- Moving contr over add. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contr over smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) ((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (tensorNode pauliContr))).tensor = ((contr i j h ((tensorNode (basisVector c' (b' 0 0 0))))).add ((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add ((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add ((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add ((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add ((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add ((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add (TensorTree.smul (-1) (contr i j h ((tensorNode (basisVector c' (b' 3 1 1))))))))))))).tensor := by rw [contr_pauliMatrix_basis_tree_expand] /- Product of basis vectors . -/ rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] rfl /-- The map to color which appears when contracting a basis vector with Pauli matrices. -/ def pauliMatrixBasisProdMap {n : ℕ} {c : Fin n → complexLorentzTensor.C} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) → Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) ((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) /-- The new basis vectors which appear when contracting pauli matrices with basis vectors. -/ def basisVectorContrPauli {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (i1 i2 i3 : Fin 4) := let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) basisVector c' (b' i1 i2 i3) lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) ∘ Fin.succAbove i ∘ Fin.succAbove j let b' (i1 i2 i3 : Fin 4) := fun k => (pauliMatrixBasisProdMap b i1 i2 i3) (i.succAbove (j.succAbove k)) (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (tensorNode pauliContr))).tensor = (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add ((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add ((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add (((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add (TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) (tensorNode (basisVector c' (b' 3 1 1))))))))))))).tensor := by rw [basis_contr_pauliMatrix_basis_tree_expand'] /- Contracting basis vectors. -/ rw [add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| contr_basisVector_tree _] rfl lemma basis_contr_pauliMatrix_basis_tree_expand_tensor {n : ℕ} {c : Fin n → complexLorentzTensor.C} (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (tensorNode pauliContr))).tensor = (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 0 0)) • (basisVectorContrPauli i j b 0 0 0) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 0 1 1)) • (basisVectorContrPauli i j b 0 1 1) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 0 1)) • (basisVectorContrPauli i j b 1 0 1) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 1 1 0)) • (basisVectorContrPauli i j b 1 1 0) + (-I) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 0 1)) • (basisVectorContrPauli i j b 2 0 1) + I • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 2 1 0)) • (basisVectorContrPauli i j b 2 1 0) + (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 0 0)) • (basisVectorContrPauli i j b 3 0 0) + (-1 : ℂ) • (contrBasisVectorMul i j (pauliMatrixBasisProdMap b 3 1 1)) • (basisVectorContrPauli i j b 3 1 1) := by rw [basis_contr_pauliMatrix_basis_tree_expand] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, cons_val_one, head_cons, Fin.val_zero, Nat.cast_zero, cons_val_two, Fin.val_one, Nat.cast_one, add_tensor, smul_tensor, tensorNode_tensor, neg_smul, one_smul, Int.reduceNeg] simp_all only [Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue] rfl /-! ## Expanding pauliCo in a basis. -/ /-- The map to color one gets when lowering the indices of pauli matrices. -/ def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1) lemma pauliMatrix_contr_down_0 : (contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun _ => 0)).prod (tensorNode pauliContr)))).tensor = basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => enter [1, 1, 1, 1, 1, 1, 1, 1] rw [contrBasisVectorMul_pos _] conv => enter [1, 1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_pos _] conv => enter [1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 1 decide · rw [basisVectorContrPauli] congr 1 decide lemma pauliMatrix_contr_down_1 : {(basisVector ![Color.down, Color.down] fun _ => 1) | ν μ ⊗ pauliContr | μ α β}ᵀ.tensor = basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => enter [1, 1, 1, 1, 1, 1, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_pos _] conv => enter [1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_pos _] conv => enter [1, 1, 1, 1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 2, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 1 decide · rw [basisVectorContrPauli] congr 1 decide lemma pauliMatrix_contr_down_2 : {(basisVector ![Color.down, Color.down] fun _ => 2) | μ ν ⊗ pauliContr | ν α β}ᵀ.tensor = (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1) + (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => enter [1, 1, 1, 1, 1, 1, 1, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => enter [1, 1, 1, 1, 1, 1, 2, 1] rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_pos _] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_pos _] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] rw [basisVectorContrPauli, basisVectorContrPauli] congr 3 · decide · decide lemma pauliMatrix_contr_down_3 : {(basisVector ![Color.down, Color.down] fun _ => 3) | μ ν ⊗ pauliContr | ν α β}ᵀ.tensor = basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + (- 1 : ℂ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (Nat.ne_of_beq_eq_false _)] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_pos _] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_pos _] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] rw [basisVectorContrPauli, basisVectorContrPauli] congr 3 · decide · decide /-- The expansion of `pauliCo` in terms of a basis. -/ lemma pauliCo_basis_expand : pauliCo = basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) - basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1) - basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) + I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1) - I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) - basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by conv => lhs rw [pauliCo] rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree] /- Moving the prod through additions. -/ rw [contr_tensor_eq <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_prod _ _ _] /- Moving contraction through addition. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contraction through smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] simp only [tensorNode_tensor, add_tensor, smul_tensor] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul] conv => enter [1, 1] rw [pauliMatrix_contr_down_0] conv => enter [1, 2, 1, 1] rw [pauliMatrix_contr_down_1] conv => enter [1, 2, 2, 1, 1] rw [pauliMatrix_contr_down_2] conv => enter [1, 2, 2, 2, 1] rw [pauliMatrix_contr_down_3] simp only [neg_smul, one_smul] abel lemma pauliCo_basis_expand_tree : {pauliCo | μ α β}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| TensorTree.add (tensorNode (basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul I (tensorNode (basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-I) (tensorNode (basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <| (tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by rw [pauliCo_basis_expand] simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl lemma pauliCo_prod_basis_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) : (prod (tensorNode pauliCo) t).tensor = (((tensorNode (basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add (((tensorNode (basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul I ((tensorNode (basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-I) ((tensorNode (basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add ((tensorNode (basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod t)))))))).tensor := by rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree] /- Moving the prod through additions. -/ rw [add_prod _ _ _] rw [add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] end complexLorentzTensor