/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.Wick.Species import HepLean.Lorentz.RealVector.Basic import HepLean.Mathematics.Fin import HepLean.SpaceTime.Basic import HepLean.Mathematics.SuperAlgebra.Basic import HepLean.Mathematics.List import HepLean.Meta.Notes.Basic import Init.Data.List.Sort.Basic import Mathlib.Data.Fin.Tuple.Take import HepLean.PerturbationTheory.Wick.Koszul.Grade /-! # Koszul signs and ordering for lists and algebras -/ namespace Wick noncomputable section def ofList {I : Type} (l : List I) (x : ℂ) : FreeAlgebra ℂ I := FreeAlgebra.equivMonoidAlgebraFreeMonoid.symm (MonoidAlgebra.single l x) lemma ofList_pair {I : Type} (l r : List I) (x y : ℂ) : ofList (l ++ r) (x * y) = ofList l x * ofList r y := by simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, EmbeddingLike.apply_eq_iff_eq] rfl lemma ofList_triple {I : Type} (la lb lc : List I) (xa xb xc : ℂ) : ofList (la ++ lb ++ lc) (xa * xb * xc) = ofList la xa * ofList lb xb * ofList lc xc := by rw [ofList_pair, ofList_pair] lemma ofList_triple_assoc {I : Type} (la lb lc : List I) (xa xb xc : ℂ) : ofList (la ++ (lb ++ lc)) (xa * (xb * xc)) = ofList la xa * ofList lb xb * ofList lc xc := by rw [ofList_pair, ofList_pair] exact Eq.symm (mul_assoc (ofList la xa) (ofList lb xb) (ofList lc xc)) lemma ofList_cons_eq_ofList {I : Type} (l : List I) (i : I) (x : ℂ) : ofList (i :: l) x = ofList [i] 1 * ofList l x := by simp only [ofList, ← map_mul, MonoidAlgebra.single_mul_single, one_mul, EmbeddingLike.apply_eq_iff_eq] rfl lemma ofList_singleton {I : Type} (i : I) : ofList [i] 1 = FreeAlgebra.ι ℂ i := by simp only [ofList, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply, MonoidAlgebra.single, AlgEquiv.ofAlgHom_symm_apply, MonoidAlgebra.lift_single, one_smul] rfl lemma ofList_eq_smul_one {I : Type} (l : List I) (x : ℂ) : ofList l x = x • ofList l 1 := by simp only [ofList] rw [← map_smul] simp lemma ofList_empty {I : Type} : ofList [] 1 = (1 : FreeAlgebra ℂ I) := by simp only [ofList, EmbeddingLike.map_eq_one_iff] rfl lemma ofList_empty' {I : Type} : ofList [] x = x • (1 : FreeAlgebra ℂ I) := by rw [ofList_eq_smul_one, ofList_empty] lemma koszulOrder_ofList {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (l : List I) (x : ℂ) : koszulOrder r q (ofList l x) = (koszulSign r q l) • ofList (List.insertionSort r l) x := by rw [ofList] rw [koszulOrder_single] change ofList (List.insertionSort r l) _ = _ rw [ofList_eq_smul_one] conv_rhs => rw [ofList_eq_smul_one] rw [smul_smul] lemma ofList_insertionSort_eq_koszulOrder {I : Type} (r : I → I → Prop) [DecidableRel r] (q : I → Fin 2) (l : List I) (x : ℂ) : ofList (List.insertionSort r l) x = (koszulSign r q l) • koszulOrder r q (ofList l x) := by rw [koszulOrder_ofList] rw [smul_smul] rw [koszulSign_mul_self] simp def freeAlgebraMap {I : Type} (f : I → Type) [∀ i, Fintype (f i)] : FreeAlgebra ℂ I →ₐ[ℂ] FreeAlgebra ℂ (Σ i, f i) := FreeAlgebra.lift ℂ fun i => ∑ (j : f i), FreeAlgebra.ι ℂ ⟨i, j⟩ lemma freeAlgebraMap_ι {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) : freeAlgebraMap f (FreeAlgebra.ι ℂ i) = ∑ (b : f i), FreeAlgebra.ι ℂ ⟨i, b⟩ := by simp [freeAlgebraMap] def ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (l : List I) (x : ℂ) : FreeAlgebra ℂ (Σ i, f i) := freeAlgebraMap f (ofList l x) lemma ofListM_empty {I : Type} (f : I → Type) [∀ i, Fintype (f i)] : ofListM f [] 1 = 1 := by simp only [ofListM, EmbeddingLike.map_eq_one_iff] rw [ofList_empty] exact map_one (freeAlgebraMap f) lemma ofListM_empty_smul {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) : ofListM f [] x = x • 1 := by simp only [ofListM, EmbeddingLike.map_eq_one_iff] rw [ofList_eq_smul_one] rw [ofList_empty] simp lemma ofListM_cons {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) : ofListM f (i :: r) x = (∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩) * (ofListM f r x) := by rw [ofListM, ofList_cons_eq_ofList, ofList_singleton, map_mul] conv_lhs => lhs; rw [freeAlgebraMap] rw [ofListM] simp lemma ofListM_singleton {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (x : ℂ) : ofListM f [i] x = ∑ j : f i, x • FreeAlgebra.ι ℂ ⟨i, j⟩ := by simp only [ofListM] rw [ofList_eq_smul_one, ofList_singleton, map_smul] rw [freeAlgebraMap_ι] rw [Finset.smul_sum] lemma ofListM_singleton_one {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) : ofListM f [i] 1 = ∑ j : f i, FreeAlgebra.ι ℂ ⟨i, j⟩ := by simp only [ofListM] rw [ofList_eq_smul_one, ofList_singleton, map_smul] rw [freeAlgebraMap_ι] rw [Finset.smul_sum] simp lemma ofListM_cons_eq_ofListM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (i : I) (r : List I) (x : ℂ) : ofListM f (i :: r) x = ofListM f [i] 1 * ofListM f r x := by rw [ofListM_cons, ofListM_singleton] simp only [one_smul] def liftM {I : Type} (f : I → Type) [∀ i, Fintype (f i)] : (l : List I) → (a : Π i, f (l.get i)) → List (Σ i, f i) | [], _ => [] | i :: l, a => ⟨i, a ⟨0, Nat.zero_lt_succ l.length⟩⟩ :: liftM f l (fun i => a (Fin.succ i)) @[simp] lemma liftM_length {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) : (liftM f r a).length = r.length := by induction r with | nil => rfl | cons i r ih => simp only [liftM, List.length_cons, Fin.zero_eta, add_left_inj] rw [ih] lemma liftM_get {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r : List I) (a : Π i, f (r.get i)) : (liftM f r a).get = (fun i => ⟨r.get i, a i⟩) ∘ Fin.cast (by simp) := by induction r with | nil => funext i exact Fin.elim0 i | cons i l ih => simp only [liftM, List.length_cons, Fin.zero_eta, List.get_eq_getElem] funext x match x with | ⟨0, h⟩ => rfl | ⟨x + 1, h⟩ => simp only [List.length_cons, List.get_eq_getElem, Prod.mk.eta, List.getElem_cons_succ, Function.comp_apply, Fin.cast_mk] change (liftM f _ _).get _ = _ rw [ih] simp def liftMCongrEquiv {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (r0 : I) (r : List I) (n : Fin (r0 :: r).length) : (Π i, f ((r0 :: r).get i)) ≃ f ((r0 :: r).get n) × Π i, f ((r0 :: r).get (n.succAbove i)) := (Fin.insertNthEquiv _ _).symm lemma ofListM_expand {I : Type} (f : I → Type) [∀ i, Fintype (f i)] (x : ℂ) : (l : List I) → ofListM f l x = ∑ (a : Π i, f (l.get i)), ofList (liftM f l a) x | [] => by simp only [ofListM, List.length_nil, List.get_eq_getElem, Finset.univ_unique, liftM, Finset.sum_const, Finset.card_singleton, one_smul] rw [ofList_eq_smul_one, map_smul, ofList_empty, ofList_eq_smul_one, ofList_empty, map_one] | i :: l => by rw [ofListM_cons, ofListM_expand f x l] let e1 : f i × (Π j, f (l.get j)) ≃ (Π j, f ((i :: l).get j)) := (Fin.insertNthEquiv (fun j => f ((i :: l).get j)) 0) rw [← e1.sum_comp (α := FreeAlgebra ℂ _)] erw [Finset.sum_product] rw [Finset.sum_mul] conv_lhs => rhs intro n rw [Finset.mul_sum] congr funext j congr funext n rw [← ofList_singleton, ← ofList_pair, one_mul] rfl @[simp] lemma liftM_grade {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (r : List I) (a : Π i, f (r.get i)) : grade (fun i => q i.fst) (liftM f r a) = 1 ↔ grade q r = 1 := by induction r with | nil => simp [liftM] | cons i r ih => simp only [grade, Fin.isValue, ite_eq_right_iff, zero_ne_one, imp_false] have ih' := ih (fun i => a i.succ) have h1 : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = grade q r := by by_cases h : grade q r = 1 · simp_all · have h0 : grade q r = 0 := by omega rw [h0] at ih' simp only [Fin.isValue, zero_ne_one, iff_false] at ih' have h0' : grade (fun i => q i.fst) (liftM f r fun i => a i.succ) = 0 := by omega rw [h0, h0'] rw [h1] @[simp] lemma liftM_grade_take {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) : (r : List I) → (a : Π i, f (r.get i)) → (n : ℕ) → grade (fun i => q i.fst) (List.take n (liftM f r a)) = grade q (List.take n r) | [], _, _ => by simp [liftM] | i :: r, a, 0 => by simp | i :: r, a, Nat.succ n => by simp only [grade, Fin.isValue] have ih : grade (fun i => q i.fst) (List.take n (liftM f r fun i => a i.succ)) = grade q (List.take n r) := by refine (liftM_grade_take q r (fun i => a i.succ) n) rw [ih] open HepLean.List def listMEraseEquiv {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) {r0 : I} {r : List I} (n : Fin (r0 :: r).length) : (Π (i :Fin ((r0 :: r).eraseIdx ↑n).length) , f (((r0 :: r).eraseIdx ↑n).get i)) ≃ Π (i : Fin r.length), f ((r0 :: r).get (n.succAbove i)) := Equiv.piCongr (Fin.castOrderIso (by rw [eraseIdx_cons_length])).toEquiv fun x => Equiv.cast (congrArg f (by rw [HepLean.List.eraseIdx_get] simp congr 1 simp [Fin.succAbove] sorry )) /- lemma liftM_eraseIdx {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (r0 : I): (r : List I) → (n : Fin (r0 :: r).length) → (a : Π i, f ((r0 :: r).get i)) → (liftM f (r0 :: r) a).eraseIdx ↑n = liftM f (List.eraseIdx (r0 :: r) n) ((listMEraseEquiv q n).symm a) | r, ⟨0, h⟩, a => by simp [List.eraseIdx] rfl | r, ⟨n + 1, h⟩, a => by have hf : (r.eraseIdx n).length + 1 = r.length := by rw [List.length_eraseIdx] simp at h simp [h] omega have hn : n < (r.eraseIdx n).length + 1 := by simp at h rw [hf] exact h simp [liftM] apply And.intro · refine eq_cast_iff_heq.mpr ?left.a simp [Fin.cast] rw [Fin.succAbove] simp rw [if_pos] simp simp refine Fin.add_one_pos ↑n ?left.a.hc.h simp at h rw [Fin.lt_def] conv_rhs => simp rw [hf] simp rw [Nat.mod_eq_of_modEq rfl (Nat.le.step h)] exact h · have hl := liftM_eraseIdx q r ⟨n, Nat.succ_lt_succ_iff.mp h⟩ (fun i => a i.succ) rw [hl] congr funext i rw [Equiv.apply_eq_iff_eq_symm_apply] simp refine eq_cast_iff_heq.mpr ?right.e_a.h.a congr rw [Fin.ext_iff] simp [Fin.succAbove] simp [Fin.lt_def] rw [@Fin.val_add_one] simp [hn] rw [Nat.mod_eq_of_lt hn] rw [Nat.mod_eq_of_lt] have hnot : ¬ ↑n = Fin.last ((r.eraseIdx n).length + 1) := by rw [Fin.ext_iff] simp rw [Nat.mod_eq_of_lt] omega exact Nat.lt_add_right 1 hn simp [hnot] by_cases hi : i.val < n · simp [hi] · simp [hi] · exact Nat.lt_add_right 1 hn -/ lemma koszulSignInsert_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (l : List I) (a : (j : Fin l.length) → f (l.get j)) (x : (i : I) × f i): koszulSignInsert (fun i j => le1 i.fst j.fst) (fun i => q i.fst) x (liftM f l a) = koszulSignInsert le1 q x.1 l := by induction l with | nil => simp [koszulSignInsert] | cons b l ih => simp [koszulSignInsert] rw [ih] lemma koszulSign_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (l : List I) (a : (i : Fin l.length) → f (l.get i)) : koszulSign (fun i j => le1 i.fst j.fst) (fun i => q i.fst) (liftM f l a) = koszulSign le1 q l := by induction l with | nil => simp [koszulSign] | cons i l ih => simp [koszulSign, liftM] rw [ih] congr 1 rw [koszulSignInsert_liftM] lemma insertionSortEquiv_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i)) : (HepLean.List.insertionSortEquiv (fun i j => le1 i.fst j.fst) (liftM f l a)) = (Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertionSortEquiv le1 l).trans (Fin.castOrderIso (by simp)).toEquiv) := by induction l with | nil => simp [liftM, HepLean.List.insertionSortEquiv] | cons i l ih => simp only [liftM, List.length_cons, Fin.zero_eta, List.insertionSort] conv_lhs => simp [HepLean.List.insertionSortEquiv] have h1 (l' : List (Σ i, f i)) : (HepLean.List.insertEquiv (fun i j => le1 i.fst j.fst) ⟨i, a ⟨0, by simp⟩⟩ l') = (Fin.castOrderIso (by simp)).toEquiv.trans ((HepLean.List.insertEquiv le1 i (List.map (fun i => i.1) l')).trans (Fin.castOrderIso (by simp [List.orderedInsert_length])).toEquiv) := by induction l' with | nil => simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, List.length_singleton, List.orderedInsert, HepLean.List.insertEquiv, Fin.castOrderIso_refl, OrderIso.refl_toEquiv, Equiv.trans_refl] rfl | cons j l' ih' => by_cases hr : (fun (i j : Σ i, f i) => le1 i.fst j.fst) ⟨i, a ⟨0, by simp⟩⟩ j · rw [HepLean.List.insertEquiv_cons_pos] · erw [HepLean.List.insertEquiv_cons_pos] · rfl · exact hr · exact hr · rw [HepLean.List.insertEquiv_cons_neg] · erw [HepLean.List.insertEquiv_cons_neg] · simp only [List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, List.orderedInsert, Prod.mk.eta, Fin.mk_one] erw [ih'] ext x simp only [Prod.mk.eta, List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta, HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one, HepLean.Fin.equivCons_castOrderIso, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast] congr 2 match x with | ⟨0, h⟩ => rfl | ⟨1, h⟩ => rfl | ⟨Nat.succ (Nat.succ x), h⟩ => rfl · exact hr · exact hr erw [h1] rw [ih] simp only [HepLean.Fin.equivCons_trans, Nat.succ_eq_add_one, HepLean.Fin.equivCons_castOrderIso, List.length_cons, Nat.add_zero, Nat.zero_eq, Fin.zero_eta] ext x conv_rhs => simp [HepLean.List.insertionSortEquiv] simp only [Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast] have h2' (i : Σ i, f i) (l' : List ( Σ i, f i)) : List.map (fun i => i.1) (List.orderedInsert (fun i j => le1 i.fst j.fst) i l') = List.orderedInsert le1 i.1 (List.map (fun i => i.1) l') := by induction l' with | nil => simp [HepLean.List.insertEquiv] | cons j l' ih' => by_cases hij : (fun i j => le1 i.fst j.fst) i j · rw [List.orderedInsert_of_le] · erw [List.orderedInsert_of_le] · simp · exact hij · exact hij · simp only [List.orderedInsert, hij, ↓reduceIte, List.unzip_snd, List.map_cons] have hn : ¬ le1 i.1 j.1 := hij simp only [hn, ↓reduceIte, List.cons.injEq, true_and] simpa using ih' have h2 (l' : List ( Σ i, f i)) : List.map (fun i => i.1) (List.insertionSort (fun i j => le1 i.fst j.fst) l') = List.insertionSort le1 (List.map (fun i => i.1) l') := by induction l' with | nil => simp [HepLean.List.insertEquiv] | cons i l' ih' => simp only [List.insertionSort, List.unzip_snd] simp only [List.unzip_snd] at h2' rw [h2'] congr rw [HepLean.List.insertEquiv_congr _ _ _ (h2 _)] simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans, Fin.coe_cast] have h3 : (List.insertionSort le1 (List.map (fun i => i.1) (liftM f l (fun i => a i.succ)))) = List.insertionSort le1 l := by congr have h3' (l : List I) (a : Π (i : Fin l.length), f (l.get i)) : List.map (fun i => i.1) (liftM f l a) = l := by induction l with | nil => rfl | cons i l ih' => simp only [liftM, List.length_cons, Fin.zero_eta, Prod.mk.eta, List.unzip_snd, List.map_cons, List.cons.injEq, true_and] simpa using ih' _ rw [h3'] rw [HepLean.List.insertEquiv_congr _ _ _ h3] simp only [List.length_cons, Equiv.trans_apply, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans, Fin.cast_eq_self, Fin.coe_cast] lemma insertionSort_liftM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (le1 : I → I → Prop) [DecidableRel le1](l : List I) (a : (i : Fin l.length) → f (l.get i)) : List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a) = liftM f (List.insertionSort le1 l) (Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by congr 1 rw [← HepLean.List.insertionSortEquiv_get] simp))) a) := by let l1 := List.insertionSort (fun i j => le1 i.fst j.fst) (liftM f l a) let l2 := liftM f (List.insertionSort le1 l) (Equiv.piCongr (HepLean.List.insertionSortEquiv le1 l) (fun i => (Equiv.cast (by congr 1 rw [← HepLean.List.insertionSortEquiv_get] simp))) a) change l1 = l2 have hlen : l1.length = l2.length := by simp [l1, l2] have hget : l1.get = l2.get ∘ Fin.cast hlen := by rw [← HepLean.List.insertionSortEquiv_get] rw [liftM_get, liftM_get] funext i rw [insertionSortEquiv_liftM] simp only [ Function.comp_apply, Equiv.symm_trans_apply, OrderIso.toEquiv_symm, Fin.symm_castOrderIso, RelIso.coe_fn_toEquiv, Fin.castOrderIso_apply, Fin.cast_trans, Fin.cast_eq_self, id_eq, eq_mpr_eq_cast, Fin.coe_cast, Sigma.mk.inj_iff] apply And.intro · have h1 := congrFun (HepLean.List.insertionSortEquiv_get (r := le1) l) (Fin.cast (by simp) i) rw [← h1] simp · simp [Equiv.piCongr] exact (cast_heq _ _).symm apply List.ext_get hlen rw [hget] simp lemma koszulOrder_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) = freeAlgebraMap f (koszulOrder le1 q (ofList l x)) := by rw [koszulOrder_ofList] rw [map_smul] change _ = _ • ofListM _ _ _ rw [ofListM_expand] rw [map_sum] conv_lhs => rhs intro a rw [koszulOrder_ofList] rw [koszulSign_liftM] rw [← Finset.smul_sum] apply congrArg conv_lhs => rhs intro n rw [insertionSort_liftM] rw [ofListM_expand] refine Fintype.sum_equiv ((HepLean.List.insertionSortEquiv le1 l).piCongr fun i => Equiv.cast ?_) _ _ ?_ congr 1 · rw [← HepLean.List.insertionSortEquiv_get] simp · intro x rfl lemma koszulOrder_ofListM_eq_ofListM {I : Type} {f : I → Type} [∀ i, Fintype (f i)] (q : I → Fin 2) (le1 : I → I → Prop) [DecidableRel le1] (l : List I) (x : ℂ) : koszulOrder (fun i j => le1 i.1 j.1) (fun i => q i.fst) (ofListM f l x) = koszulSign le1 q l • ofListM f (List.insertionSort le1 l) x := by rw [koszulOrder_ofListM, koszulOrder_ofList, map_smul] rfl end end Wick