/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.WickContraction.Basic /-! # Uncontracted elements -/ open FieldSpecification variable {𝓕 : FieldSpecification} namespace WickContraction variable {n : ℕ} (c : WickContraction n) open HepLean.List /-- Given a Wick contraction, the finset of elements of `Fin n` which are not contracted. -/ def uncontracted : Finset (Fin n) := Finset.filter (fun i => c.getDual? i = none) (Finset.univ) lemma congr_uncontracted {n m : ℕ} (c : WickContraction n) (h : n = m) : (c.congr h).uncontracted = Finset.map (finCongr h).toEmbedding c.uncontracted := by subst h simp /-- The equivalence of `Option c.uncontracted` for two propositionally equal Wick contractions. -/ def uncontractedCongr {c c': WickContraction n} (h : c = c') : Option c.uncontracted ≃ Option c'.uncontracted := Equiv.optionCongr (Equiv.subtypeEquivRight (by rw [h]; simp)) @[simp] lemma uncontractedCongr_none {c c': WickContraction n} (h : c = c') : (uncontractedCongr h) none = none := by simp [uncontractedCongr] @[simp] lemma uncontractedCongr_some {c c': WickContraction n} (h : c = c') (i : c.uncontracted) : (uncontractedCongr h) (some i) = some (Equiv.subtypeEquivRight (by rw [h]; simp) i) := by simp [uncontractedCongr] lemma mem_uncontracted_iff_not_contracted (i : Fin n) : i ∈ c.uncontracted ↔ ∀ p ∈ c.1, i ∉ p := by simp only [uncontracted, getDual?, Finset.mem_filter, Finset.mem_univ, true_and] apply Iff.intro · intro h p hp have hp := c.2.1 p hp rw [Finset.card_eq_two] at hp obtain ⟨a, b, ha, hb, hab⟩ := hp rw [Fin.find_eq_none_iff] at h by_contra hn simp only [Finset.mem_insert, Finset.mem_singleton] at hn rcases hn with hn | hn · subst hn exact h b hp · subst hn rw [Finset.pair_comm] at hp exact h a hp · intro h rw [Fin.find_eq_none_iff] by_contra hn simp only [not_forall, Decidable.not_not] at hn obtain ⟨j, hj⟩ := hn apply h {i, j} hj simp end WickContraction