/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.ComplexLorentz.BasisTrees /-! ## Lowering indices of Pauli matrices. -/ open IndexNotation open CategoryTheory open MonoidalCategory open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory open TensorTree open OverColor.Discrete noncomputable section namespace Fermion open complexLorentzTensor /-- The map to color one gets when lowering the indices of pauli matrices. -/ def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1) lemma pauliMatrix_contr_down_0 : (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by rw [basis_contr_pauliMatrix_basis_tree_expand] rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg] simp only [smul_tensor, add_tensor, tensorNode_tensor] simp only [one_smul, zero_smul, smul_zero, add_zero] congr 1 · congr 1 funext k fin_cases k <;> rfl · congr 1 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_0_tree : (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by exact pauliMatrix_contr_down_0 lemma pauliMatrix_contr_down_1 : {(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by rw [basis_contr_pauliMatrix_basis_tree_expand] rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_pos, contrBasisVectorMul_pos, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg] simp only [smul_tensor, add_tensor, tensorNode_tensor] simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k fin_cases k <;> rfl · congr 1 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_1_tree : {(basisVector ![Color.down, Color.down] fun x => 1) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))).tensor := by exact pauliMatrix_contr_down_1 lemma pauliMatrix_contr_down_2 : {(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) + (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by rw [basis_contr_pauliMatrix_basis_tree_expand] rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_pos, contrBasisVectorMul_pos, contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k fin_cases k <;> rfl · congr 2 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_2_tree : {(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = (TensorTree.add (smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) (smul I (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by exact pauliMatrix_contr_down_2 lemma pauliMatrix_contr_down_3 : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by rw [basis_contr_pauliMatrix_basis_tree_expand] rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_neg, contrBasisVectorMul_pos, contrBasisVectorMul_pos] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k fin_cases k <;> rfl · congr 2 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_3_tree : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = (TensorTree.add ((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) (smul (-1) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by exact pauliMatrix_contr_down_3 lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) - basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) - basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) + I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) - I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) - basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree] /- Moving the prod through additions. -/ rw [contr_tensor_eq <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_prod _ _ _] /- Moving contraction through addition. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contraction through smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] /- Replacing the contractions. -/ rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree] /- Simplifying -/ simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul] simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul, _root_.neg_neg, mul_one] rfl lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = (TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| TensorTree.add (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul I (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <| (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by rw [pauliMatrix_lower] simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl lemma pauliMatrix_lower_basis_expand_prod {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) : (prod {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ t).tensor = (((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add (((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul I ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-I) ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add ((tensorNode (basisVector pauliMatrixLowerMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod t)))))))).tensor := by rw [prod_tensor_eq_fst <| pauliMatrix_lower_tree] /- Moving the prod through additions. -/ rw [add_prod _ _ _] rw [add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] end Fermion