/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Lorentz.Group.Basic import HepLean.Lorentz.RealVector.Basic import Mathlib.RepresentationTheory.Basic import HepLean.Lorentz.Group.Restricted import HepLean.Lorentz.PauliMatrices.SelfAdjoint import HepLean.Meta.Informal /-! # The group SL(2, ℂ) and it's relation to the Lorentz group The aim of this file is to give the relationship between `SL(2, ℂ)` and the Lorentz group. -/ namespace Lorentz open Matrix open MatrixGroups open Complex namespace SL2C noncomputable section /-! ## Some basic properties about SL(2, ℂ) Possibly to be moved to mathlib at some point. -/ lemma inverse_coe (M : SL(2, ℂ)) : M.1⁻¹ = (M⁻¹).1 := by apply Matrix.inv_inj simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero, not_false_eq_true, nonsing_inv_nonsing_inv, SpecialLinearGroup.coe_inv] have h1 : IsUnit M.1.det := by simp rw [Matrix.inv_adjugate M.1 h1] · simp · simp lemma transpose_coe (M : SL(2, ℂ)) : M.1ᵀ = (M.transpose).1 := rfl /-! ## Representation of SL(2, ℂ) on spacetime Through the correspondence between spacetime and self-adjoint matrices, we can define a representation a representation of `SL(2, ℂ)` on spacetime. -/ /-- Given an element `M ∈ SL(2, ℂ)` the linear map from `selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)` to itself defined by `A ↦ M * A * Mᴴ`. -/ @[simps!] def toLinearMapSelfAdjointMatrix (M : SL(2, ℂ)) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) →ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where toFun A := ⟨M.1 * A.1 * Matrix.conjTranspose M, by noncomm_ring [selfAdjoint.mem_iff, star_eq_conjTranspose, conjTranspose_mul, conjTranspose_conjTranspose, (star_eq_conjTranspose A.1).symm.trans $ selfAdjoint.mem_iff.mp A.2]⟩ map_add' A B := by simp only [AddSubgroup.coe_add, AddMemClass.mk_add_mk, Subtype.mk.injEq] noncomm_ring [AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, AddSubmonoid.mk_add_mk, Subtype.mk.injEq] map_smul' r A := by noncomm_ring [selfAdjoint.val_smul, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, RingHom.id_apply] lemma toLinearMapSelfAdjointMatrix_det (M : SL(2, ℂ)) (A : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : det ((toLinearMapSelfAdjointMatrix M) A).1 = det A.1 := by simp only [LinearMap.coe_mk, AddHom.coe_mk, toLinearMapSelfAdjointMatrix, det_mul, selfAdjoint.mem_iff, det_conjTranspose, det_mul, det_one, RingHom.id_apply] simp only [SpecialLinearGroup.det_coe, one_mul, star_one, mul_one] /-- The monoid homomorphisms from `SL(2, ℂ)` to matrices indexed by `Fin 1 ⊕ Fin 3` formed by the action `M A Mᴴ`. -/ def toMatrix : SL(2, ℂ) →* Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ where toFun M := LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL (toLinearMapSelfAdjointMatrix M) map_one' := by simp only [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_one, one_mul, conjTranspose_one, mul_one, Subtype.coe_eta] erw [LinearMap.toMatrix_one] map_mul' M N := by simp only rw [← LinearMap.toMatrix_mul] apply congrArg ext1 x simp only [toLinearMapSelfAdjointMatrix, SpecialLinearGroup.coe_mul, conjTranspose_mul, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, Subtype.mk.injEq] noncomm_ring open Lorentz in lemma toMatrix_apply_contrMod (M : SL(2, ℂ)) (v : ContrMod 3) : (toMatrix M) *ᵥ v = ContrMod.toSelfAdjoint.symm ((toLinearMapSelfAdjointMatrix M) (ContrMod.toSelfAdjoint v)) := by simp only [ContrMod.mulVec, toMatrix, MonoidHom.coe_mk, OneHom.coe_mk] obtain ⟨a, ha⟩ := ContrMod.toSelfAdjoint.symm.surjective v subst ha rw [LinearEquiv.apply_symm_apply] simp only [ContrMod.toSelfAdjoint, LinearEquiv.trans_symm, LinearEquiv.symm_symm, LinearEquiv.trans_apply] change ContrMod.toFin1dℝEquiv.symm ((((LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL) (toLinearMapSelfAdjointMatrix M))) *ᵥ (((Finsupp.linearEquivFunOnFinite ℝ ℝ (Fin 1 ⊕ Fin 3)) (PauliMatrix.σSAL.repr a)))) = _ apply congrArg erw [LinearMap.toMatrix_mulVec_repr] rfl lemma toMatrix_mem_lorentzGroup (M : SL(2, ℂ)) : toMatrix M ∈ LorentzGroup 3 := by rw [LorentzGroup.mem_iff_norm] intro x apply ofReal_injective rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint] rw [toMatrix_apply_contrMod] rw [LinearEquiv.apply_symm_apply] rw [toLinearMapSelfAdjointMatrix_det] rw [Lorentz.contrContrContractField.same_eq_det_toSelfAdjoint] /-- The group homomorphism from `SL(2, ℂ)` to the Lorentz group `𝓛`. -/ @[simps!] def toLorentzGroup : SL(2, ℂ) →* LorentzGroup 3 where toFun M := ⟨toMatrix M, toMatrix_mem_lorentzGroup M⟩ map_one' := by simp only [_root_.map_one] rfl map_mul' M N := by ext1 simp only [_root_.map_mul, lorentzGroupIsGroup_mul_coe] lemma toLorentzGroup_eq_σSAL (M : SL(2, ℂ)) : toLorentzGroup M = LinearMap.toMatrix PauliMatrix.σSAL PauliMatrix.σSAL (toLinearMapSelfAdjointMatrix M) := by rfl lemma toLinearMapSelfAdjointMatrix_basis (i : Fin 1 ⊕ Fin 3) : toLinearMapSelfAdjointMatrix M (PauliMatrix.σSAL i) = ∑ j, (toLorentzGroup M).1 j i • PauliMatrix.σSAL j := by rw [toLorentzGroup_eq_σSAL] simp only [LinearMap.toMatrix_apply, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton] nth_rewrite 1 [← (Basis.sum_repr PauliMatrix.σSAL ((toLinearMapSelfAdjointMatrix M) (PauliMatrix.σSAL i)))] rfl lemma toLinearMapSelfAdjointMatrix_σSA (i : Fin 1 ⊕ Fin 3) : toLinearMapSelfAdjointMatrix M (PauliMatrix.σSA i) = ∑ j, (toLorentzGroup M⁻¹).1 i j • PauliMatrix.σSA j := by have h1 : (toLorentzGroup M⁻¹).1 = minkowskiMatrix.dual (toLorentzGroup M).1 := by simp simp only [h1] rw [PauliMatrix.σSA_minkowskiMetric_σSAL, _root_.map_smul] rw [toLinearMapSelfAdjointMatrix_basis] rw [Finset.smul_sum] apply congrArg funext j rw [smul_smul, PauliMatrix.σSA_minkowskiMetric_σSAL, smul_smul] apply congrFun apply congrArg exact Eq.symm (minkowskiMatrix.dual_apply_minkowskiMatrix ((toLorentzGroup M).1) i j) /-! ## Homomorphism to the restricted Lorentz group The homomorphism `toLorentzGroup` restricts to a homomorphism to the restricted Lorentz group. In this section we will define this homomorphism. -/ informal_lemma toLorentzGroup_det_one where math :≈ "The determinant of the image of `SL(2, ℂ)` in the Lorentz group is one." deps :≈ [``toLorentzGroup] informal_lemma toLorentzGroup_inl_inl_nonneg where math :≈ "The time coponent of the image of `SL(2, ℂ)` in the Lorentz group is non-negative." deps :≈ [``toLorentzGroup] informal_lemma toRestrictedLorentzGroup where math :≈ "The homomorphism from `SL(2, ℂ)` to the restricted Lorentz group." deps :≈ [``toLorentzGroup, ``toLorentzGroup_det_one, ``toLorentzGroup_inl_inl_nonneg, ``LorentzGroup.Restricted] /-! TODO: Define homomorphism from `SL(2, ℂ)` to the restricted Lorentz group. -/ end end SL2C end Lorentz