/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Data.Set.Finite import Mathlib.Data.Finset.Sort import Mathlib.Logic.Equiv.Fin /-! # Index notation for a type In this file we will define an index of a Lorentz tensor as a string satisfying certain properties. For example, the string `ᵘ¹²` is an index of a real Lorentz tensors. The first character `ᵘ` specifies the color of the index, and the subsequent characters `¹²` specify the id of the index. Strings of indices e.g. `ᵘ¹²ᵤ₄₃`` are defined elsewhere. -/ open Lean open String /-- The class defining index notation on a type `X`. Normally `X` will be taken as the type of colors of a `TensorStructure`. -/ class IndexNotation (X : Type) where /-- The list of characters describing the index notation e.g. `{'ᵘ', 'ᵤ'}` for real tensors. -/ charList : Finset Char /-- An equivalence between `X` (colors of indices) and `charList`. This takes every color of index to its notation character. -/ notaEquiv : X ≃ charList namespace IndexNotation variable (X : Type) [IndexNotation X] variable [Fintype X] [DecidableEq X] /-! ## Lists of characters forming an index Here we define `listCharIndex` and properties thereof. -/ /-- The map taking a color to its notation character. -/ def nota {X : Type} [IndexNotation X] (x : X) : Char := (IndexNotation.notaEquiv).toFun x /-- A character is a `notation character` if it is in `charList`. -/ def isNotationChar (c : Char) : Bool := if c ∈ charList X then true else false /-- A character is a numeric superscript if it is e.g. `⁰`, `¹`, etc. -/ def isNumericSupscript (c : Char) : Bool := c = '¹' ∨ c = '²' ∨ c = '³' ∨ c = '⁴' ∨ c = '⁵' ∨ c = '⁶' ∨ c = '⁷' ∨ c = '⁸' ∨ c = '⁹' ∨ c = '⁰' /-- Given a character `f` which is a notation character, this is true if `c` is a subscript when `f` is a subscript or `c` is a superscript when `f` is a superscript. -/ def IsIndexId (f : Char) (c : Char) : Bool := (isSubScriptAlnum f ∧ isNumericSubscript c) ∨ (¬ isSubScriptAlnum f ∧ isNumericSupscript c) /-- The proposition for a list of characters to be the tail of an index e.g. `['¹', '⁷', ...]` -/ def listCharIndexTail (f : Char) (l : List Char) : Prop := l ≠ [] ∧ List.all l (fun c => IsIndexId f c) instance : Decidable (listCharIndexTail f l) := instDecidableAnd /-- The proposition for a list of characters to be the characters of an index e.g. `['ᵘ', '¹', '⁷', ...]` -/ def listCharIndex (l : List Char) : Prop := if h : l = [] then True else let sfst := l.head h if ¬ isNotationChar X sfst then False else listCharIndexTail sfst l.tail /-- An auxillary rewrite lemma to prove that `listCharIndex` is decidable. -/ lemma listCharIndex_iff (l : List Char) : listCharIndex X l ↔ (if h : l = [] then True else let sfst := l.head h if ¬ isNotationChar X sfst then False else listCharIndexTail sfst l.tail) := by rw [listCharIndex] instance : Decidable (listCharIndex X l) := @decidable_of_decidable_of_iff _ _ (@instDecidableDite _ _ _ _ _ <| fun _ => @instDecidableDite _ _ _ _ _ <| fun _ => instDecidableListCharIndexTail) (listCharIndex_iff X l).symm /-! ## The definition of an index and its properties -/ /-- An index is a non-empty string satisfying the condtion `listCharIndex`, e.g. `ᵘ¹²` or `ᵤ₄₃` etc. -/ def Index : Type := {s : String // listCharIndex X s.toList ∧ s.toList ≠ []} instance : DecidableEq (Index X) := Subtype.instDecidableEq namespace Index variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X] /-- Creats an index from a non-empty list of characters satisfying `listCharIndex`. -/ def ofCharList (l : List Char) (h : listCharIndex X l ∧ l ≠ []) : Index X := ⟨l.asString, h⟩ instance : ToString (Index X) := ⟨fun i => i.val⟩ /-- Gets the first character in an index e.g. `ᵘ` as an element of `charList X`. -/ def head (s : Index X) : charList X := ⟨s.val.toList.head (s.prop.2), by have h := s.prop.1 have h2 := s.prop.2 simp [listCharIndex] at h simp_all only [toList, ne_eq, Bool.not_eq_true, ↓reduceDIte] simpa [isNotationChar] using h.1⟩ /-- The color associated to an index. -/ def toColor (s : Index X) : X := (IndexNotation.notaEquiv).invFun s.head /-- A map from super and subscript numerical characters to the natural numbers, returning `0` on all other characters. -/ def charToNat (c : Char) : Nat := match c with | '₀' => 0 | '₁' => 1 | '₂' => 2 | '₃' => 3 | '₄' => 4 | '₅' => 5 | '₆' => 6 | '₇' => 7 | '₈' => 8 | '₉' => 9 | '⁰' => 0 | '¹' => 1 | '²' => 2 | '³' => 3 | '⁴' => 4 | '⁵' => 5 | '⁶' => 6 | '⁷' => 7 | '⁸' => 8 | '⁹' => 9 | _ => 0 /-- The numerical characters associated with an index. -/ def tail (s : Index X) : List Char := s.val.toList.tail /-- The natural numbers assocaited with an index. -/ def tailNat (s : Index X) : List Nat := s.tail.map charToNat /-- The id of an index, as a natural number. -/ def id (s : Index X) : Nat := s.tailNat.foldl (fun a b => 10 * a + b) 0 end Index /-! ## List of indices -/ /-- The type of lists of indices. -/ structure IndexList where val : List (Index X) namespace IndexList variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X] variable (l : IndexList X) /-- The number of indices in an index list. -/ def length : ℕ := l.val.length lemma ext (h : l.val = l2.val) : l = l2 := by cases l cases l2 simp_all /-- The map of from `Fin s.numIndices` into colors associated to an index list. -/ def colorMap : Fin l.length → X := fun i => (l.val.get i).toColor /-- The map of from `Fin s.numIndices` into the natural numbers associated to an index list. -/ def idMap : Fin l.length → Nat := fun i => (l.val.get i).id lemma idMap_cast {l1 l2 : IndexList X} (h : l1 = l2) (i : Fin l1.length) : l1.idMap i = l2.idMap (Fin.cast (by rw [h]) i) := by subst h rfl /-- Given a list of indices a subset of `Fin l.numIndices × Index X` of pairs of positions in `l` and the corresponding item in `l`. -/ def toPosSet (l : IndexList X) : Set (Fin l.length × Index X) := {(i, l.val.get i) | i : Fin l.length} /-- Equivalence between `toPosSet` and `Fin l.numIndices`. -/ def toPosSetEquiv (l : IndexList X) : l.toPosSet ≃ Fin l.length where toFun := fun x => x.1.1 invFun := fun x => ⟨(x, l.val.get x), by simp [toPosSet]⟩ left_inv x := by have hx := x.prop simp [toPosSet] at hx simp only [List.get_eq_getElem] obtain ⟨i, hi⟩ := hx have hi2 : i = x.1.1 := by obtain ⟨val, property⟩ := x obtain ⟨fst, snd⟩ := val simp_all only [Prod.mk.injEq] subst hi2 simp_all only [Subtype.coe_eta] right_inv := by intro x rfl lemma toPosSet_is_finite (l : IndexList X) : l.toPosSet.Finite := Finite.intro l.toPosSetEquiv instance : Fintype l.toPosSet where elems := Finset.map l.toPosSetEquiv.symm.toEmbedding Finset.univ complete := by intro x simp_all only [Finset.mem_map_equiv, Equiv.symm_symm, Finset.mem_univ] /-- Given a list of indices a finite set of `Fin l.length × Index X` of pairs of positions in `l` and the corresponding item in `l`. -/ def toPosFinset (l : IndexList X) : Finset (Fin l.length × Index X) := l.toPosSet.toFinset /-- The construction of a list of indices from a map from `Fin n` to `Index X`. -/ def fromFinMap {n : ℕ} (f : Fin n → Index X) : IndexList X where val := (Fin.list n).map f @[simp] lemma fromFinMap_numIndices {n : ℕ} (f : Fin n → Index X) : (fromFinMap f).length = n := by simp [fromFinMap, length] /-! ## Appending index lists. -/ section append variable {X : Type} [IndexNotation X] [Fintype X] [DecidableEq X] variable (l l2 l3 : IndexList X) instance : HAppend (IndexList X) (IndexList X) (IndexList X) where hAppend := fun l l2 => {val := l.val ++ l2.val} @[simp] lemma append_length : (l ++ l2).length = l.length + l2.length := by simp [IndexList.length] exact List.length_append l.val l2.val lemma append_assoc : l ++ l2 ++ l3 = l ++ (l2 ++ l3) := by apply ext change l.val ++ l2.val ++ l3.val = l.val ++ (l2.val ++ l3.val) exact List.append_assoc l.val l2.val l3.val def appendEquiv {l l2 : IndexList X} : Fin l.length ⊕ Fin l2.length ≃ Fin (l ++ l2).length := finSumFinEquiv.trans (Fin.castOrderIso (List.length_append _ _).symm).toEquiv def appendInl : Fin l.length ↪ Fin (l ++ l2).length where toFun := appendEquiv ∘ Sum.inl inj' := by intro i j h simp [Function.comp] at h exact h def appendInr : Fin l2.length ↪ Fin (l ++ l2).length where toFun := appendEquiv ∘ Sum.inr inj' := by intro i j h simp [Function.comp] at h exact h @[simp] lemma appendInl_appendEquiv : (l.appendInl l2).trans appendEquiv.symm.toEmbedding = {toFun := Sum.inl, inj' := Sum.inl_injective} := by ext i simp [appendInl] @[simp] lemma appendInr_appendEquiv : (l.appendInr l2).trans appendEquiv.symm.toEmbedding = {toFun := Sum.inr, inj' := Sum.inr_injective} := by ext i simp [appendInr] @[simp] lemma append_val {l l2 : IndexList X} : (l ++ l2).val = l.val ++ l2.val := by rfl @[simp] lemma idMap_append_inl {l l2 : IndexList X} (i : Fin l.length) : (l ++ l2).idMap (appendEquiv (Sum.inl i)) = l.idMap i := by simp [appendEquiv, idMap] rw [List.getElem_append_left] rfl @[simp] lemma idMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) : (l ++ l2).idMap (appendEquiv (Sum.inr i)) = l2.idMap i := by simp [appendEquiv, idMap, IndexList.length] rw [List.getElem_append_right] simp omega omega @[simp] lemma colorMap_append_inl {l l2 : IndexList X} (i : Fin l.length) : (l ++ l2).colorMap (appendEquiv (Sum.inl i)) = l.colorMap i := by simp [appendEquiv, colorMap, IndexList.length] rw [List.getElem_append_left] @[simp] lemma colorMap_append_inl' : (l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inl = l.colorMap := by funext i simp @[simp] lemma colorMap_append_inr {l l2 : IndexList X} (i : Fin l2.length) : (l ++ l2).colorMap (appendEquiv (Sum.inr i)) = l2.colorMap i := by simp [appendEquiv, colorMap, IndexList.length] rw [List.getElem_append_right] simp omega omega @[simp] lemma colorMap_append_inr' : (l ++ l2).colorMap ∘ appendEquiv ∘ Sum.inr = l2.colorMap := by funext i simp lemma colorMap_sumELim (l1 l2 : IndexList X) : Sum.elim l1.colorMap l2.colorMap = (l1 ++ l2).colorMap ∘ appendEquiv := by funext x match x with | Sum.inl i => simp | Sum.inr i => simp end append end IndexList end IndexNotation