/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import Mathlib.Logic.Function.CompTypeclasses import Mathlib.Data.Real.Basic import Mathlib.CategoryTheory.FintypeCat import Mathlib.Analysis.Normed.Field.Basic /-! # Lorentz Tensors In this file we define real Lorentz tensors. We implicitly follow the definition of a modular operad. This will relation should be made explicit in the future. ## References -- For modular operads see: [Raynor][raynor2021graphical] -/ /-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/ /-! TODO: Generalize to maps into Lorentz tensors. -/ /-! ## Real Lorentz tensors -/ /-- The possible `colors` of an index for a RealLorentzTensor. There are two possiblities, `up` and `down`. -/ inductive RealLorentzTensor.Colors where | up : RealLorentzTensor.Colors | down : RealLorentzTensor.Colors /-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`.-/ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type := match μ with | RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d | RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d) | RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d) /-- An `IndexValue` is a set of actual values an index can take. e.g. for a 3-tensor (0, 1, 2). -/ @[simp] def RealLorentzTensor.IndexValue {X : FintypeCat} (d : ℕ ) (c : X → RealLorentzTensor.Colors) : Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x) /-- A Lorentz Tensor defined by its coordinate map. -/ structure RealLorentzTensor (d : ℕ) (X : FintypeCat) where /-- The color associated to each index of the tensor. -/ color : X → RealLorentzTensor.Colors /-- The coordinate map for the tensor. -/ coord : RealLorentzTensor.IndexValue d color → ℝ namespace RealLorentzTensor open CategoryTheory universe u1 variable {d : ℕ} {X Y Z : FintypeCat.{0}} /-! ## Colors -/ /-- The involution acting on colors. -/ def τ : Colors → Colors | Colors.up => Colors.down | Colors.down => Colors.up /-- The map τ is an involution. -/ @[simp] lemma τ_involutive : Function.Involutive τ := by intro x cases x <;> rfl /-- The color associated with an element of `x ∈ X` for a tensor `T`. -/ def ch {X : FintypeCat} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x /-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/ def dualColorsIndex {d : ℕ} {μ : RealLorentzTensor.Colors}: ColorsIndex d μ ≃ ColorsIndex d (τ μ) where toFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x invFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x left_inv x := by cases μ <;> rfl right_inv x := by cases μ <;> rfl /-- An equivalence of `ColorsIndex` types given an equality of a colors. -/ def castColorsIndex {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) : ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ := Equiv.cast (by rw [h]) /-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/ def congrColorsDual {μ ν : Colors} (h : μ = τ ν) : ColorsIndex d μ ≃ ColorsIndex d ν := (castColorsIndex h).trans dualColorsIndex.symm lemma congrColorsDual_symm {μ ν : Colors} (h : μ = τ ν) : (congrColorsDual h).symm = @congrColorsDual d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by match μ, ν with | Colors.up, Colors.down => rfl | Colors.down, Colors.up => rfl lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ := (Function.Involutive.eq_iff τ_involutive).mp h.symm /-! ## Index values -/ /-- An equivalence of Index values from an equality of color maps. -/ def castIndexValue {X : FintypeCat} {T S : X → Colors} (h : T = S) : IndexValue d T ≃ IndexValue d S where toFun i := (fun μ => castColorsIndex (congrFun h μ) (i μ)) invFun i := (fun μ => (castColorsIndex (congrFun h μ)).symm (i μ)) left_inv i := by simp right_inv i := by simp lemma indexValue_eq {T₁ T₂ : X → RealLorentzTensor.Colors} (d : ℕ) (h : T₁ = T₂) : IndexValue d T₁ = IndexValue d T₂ := pi_congr fun a => congrArg (ColorsIndex d) (congrFun h a) /-! ## Extensionality -/ lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = T₂.coord ∘ Equiv.cast (indexValue_eq d h)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' subst h' rfl lemma ext' {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = fun i => T₂.coord (castIndexValue h i)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' rfl /-! ## Congruence -/ /-- An equivalence between `X → Fin 1 ⊕ Fin d` and `Y → Fin 1 ⊕ Fin d` given an isomorphism between `X` and `Y`. -/ def congrSetIndexValue (d : ℕ) (f : X ≃ Y) (i : X → Colors) : IndexValue d i ≃ IndexValue d (i ∘ f.symm) := Equiv.piCongrLeft' _ f /-- Given an equivalence of indexing sets, a map on Lorentz tensors. -/ @[simps!] def congrSetMap (f : X ≃ Y) (T : RealLorentzTensor d X) : RealLorentzTensor d Y where color := T.color ∘ f.symm coord := T.coord ∘ (congrSetIndexValue d f T.color).symm lemma congrSetMap_trans (f : X ≃ Y) (g : Y ≃ Z) (T : RealLorentzTensor d X) : congrSetMap g (congrSetMap f T) = congrSetMap (f.trans g) T := by apply ext (by rfl) have h1 : (congrSetIndexValue d (f.trans g) T.color) = (congrSetIndexValue d f T.color).trans (congrSetIndexValue d g ((Equiv.piCongrLeft' (fun _ => Colors) f) T.color)) := by exact Equiv.coe_inj.mp rfl simp only [congrSetMap, Equiv.piCongrLeft'_apply, IndexValue, Equiv.symm_trans_apply, h1, Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] rfl /-- An equivalence of Tensors given an equivalence of underlying sets. -/ @[simps!] def congrSet (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where toFun := congrSetMap f invFun := congrSetMap f.symm left_inv T := by rw [congrSetMap_trans, Equiv.self_trans_symm] rfl right_inv T := by rw [congrSetMap_trans, Equiv.symm_trans_self] rfl lemma congrSet_trans (f : X ≃ Y) (g : Y ≃ Z) : (@congrSet d _ _ f).trans (congrSet g) = congrSet (f.trans g) := by refine Equiv.coe_inj.mp ?_ funext T exact congrSetMap_trans f g T lemma congrSet_refl : @congrSet d _ _ (Equiv.refl X) = Equiv.refl _ := by rfl /-! ## Sums -/ /-- An equivalence through commuting sums between types casted from `FintypeCat.of`.-/ def sumCommFintypeCat (X Y : FintypeCat) : FintypeCat.of (X ⊕ Y) ≃ FintypeCat.of (Y ⊕ X) := Equiv.sumComm X Y /-- The sum of two color maps. -/ def sumElimIndexColor (Tc : X → Colors) (Sc : Y → Colors) : FintypeCat.of (X ⊕ Y) → Colors := Sum.elim Tc Sc /-- The symmetry property on `sumElimIndexColor`. -/ lemma sumElimIndexColor_symm (Tc : X → Colors) (Sc : Y → Colors) : sumElimIndexColor Tc Sc = Equiv.piCongrLeft' _ (Equiv.sumComm X Y).symm (sumElimIndexColor Sc Tc) := by ext1 x simp_all only [Equiv.piCongrLeft'_apply, Equiv.sumComm_symm, Equiv.sumComm_apply] cases x <;> rfl /-- The sum of two index values for different color maps. -/ def sumElimIndexValue {X Y : FintypeCat} {TX : X → Colors} {TY : Y → Colors} (i : IndexValue d TX) (j : IndexValue d TY) : IndexValue d (sumElimIndexColor TX TY) := fun c => match c with | Sum.inl x => i x | Sum.inr x => j x /-- The projection of an index value on a sum of color maps to its left component. -/ def inlIndexValue {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : IndexValue d Tc := fun x => i (Sum.inl x) /-- The projection of an index value on a sum of color maps to its right component. -/ def inrIndexValue {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : IndexValue d Sc := fun y => i (Sum.inr y) /-- An equivalence between index values formed by commuting sums.-/ def sumCommIndexValue {X Y : FintypeCat} (Tc : X → Colors) (Sc : Y → Colors) : IndexValue d (sumElimIndexColor Tc Sc) ≃ IndexValue d (sumElimIndexColor Sc Tc) := (congrSetIndexValue d (sumCommFintypeCat X Y) (sumElimIndexColor Tc Sc)).trans (castIndexValue ((sumElimIndexColor_symm Sc Tc).symm)) lemma sumCommIndexValue_inlIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : inlIndexValue (sumCommIndexValue Tc Sc i) = inrIndexValue i := rfl lemma sumCommIndexValue_inrIndexValue {X Y : FintypeCat} {Tc : X → Colors} {Sc : Y → Colors} (i : IndexValue d (sumElimIndexColor Tc Sc)) : inrIndexValue (sumCommIndexValue Tc Sc i) = inlIndexValue i := rfl /-- Equivalence between sets of `RealLorentzTensor` formed by commuting sums. -/ @[simps!] def sumComm : RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) ≃ RealLorentzTensor d (FintypeCat.of (Y ⊕ X)) := congrSet (Equiv.sumComm X Y) /-! ## Marked Lorentz tensors To define contraction and multiplication of Lorentz tensors we need to mark indices. -/ /-- A `RealLorentzTensor` with `n` marked indices. -/ def Marked (d : ℕ) (X : FintypeCat) (n : ℕ) : Type := RealLorentzTensor d (FintypeCat.of (X ⊕ Σ _ : Fin n, PUnit)) namespace Marked variable {n m : ℕ} /-- The marked point. -/ def markedPoint (X : FintypeCat) (i : Fin n) : FintypeCat.of (X ⊕ Σ _ : Fin n, PUnit) := Sum.inr ⟨i, PUnit.unit⟩ /-- The colors of unmarked indices. -/ def unmarkedColor (T : Marked d X n) : X → Colors := T.color ∘ Sum.inl /-- The colors of marked indices. -/ def markedColor (T : Marked d X n) : FintypeCat.of (Σ _ : Fin n, PUnit) → Colors := T.color ∘ Sum.inr /-- The index values restricted to unmarked indices. -/ def UnmarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.unmarkedColor /-- The index values restricted to marked indices. -/ def MarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.markedColor lemma sumElimIndexColor_of_marked (T : Marked d X n) : sumElimIndexColor T.unmarkedColor T.markedColor = T.color := by ext1 x cases' x <;> rfl /-- Contruction of marked index values for the case of 1 marked index. -/ def oneMarkedIndexValue (T : Marked d X 1) (x : ColorsIndex d (T.color (markedPoint X 0))) : T.MarkedIndexValue := fun i => match i with | ⟨0, PUnit.unit⟩ => x /-- Contruction of marked index values for the case of 2 marked index. -/ def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0))) (y : ColorsIndex d (T.color (markedPoint X 1))) : T.MarkedIndexValue := fun i => match i with | ⟨0, PUnit.unit⟩ => x | ⟨1, PUnit.unit⟩ => y end Marked /-! ## Multiplication -/ open Marked /-- The contraction of the marked indices of two tensors each with one marked index, which is dual to the others. The contraction is done via `φ^μ ψ_μ = φ^0 ψ_0 + φ^1 ψ_1 + ...`. -/ @[simps!] def mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) : RealLorentzTensor d (FintypeCat.of (X ⊕ Y)) where color := sumElimIndexColor T.unmarkedColor S.unmarkedColor coord := fun i => ∑ x, T.coord (Equiv.cast (indexValue_eq d T.sumElimIndexColor_of_marked) (sumElimIndexValue (inlIndexValue i) (T.oneMarkedIndexValue x))) * S.coord (Equiv.cast (indexValue_eq d S.sumElimIndexColor_of_marked) $ sumElimIndexValue (inrIndexValue i) (S.oneMarkedIndexValue $ congrColorsDual h x)) /-- Multiplication is well behaved with regard to swapping tensors. -/ lemma sumComm_mul {X Y : FintypeCat} (T : Marked d X 1) (S : Marked d Y 1) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (S.markedColor ⟨0, PUnit.unit⟩)) : sumComm (mul T S h) = mul S T (color_eq_dual_symm h) := by refine ext' (sumElimIndexColor_symm S.unmarkedColor T.unmarkedColor).symm ?_ change (mul T S h).coord ∘ (congrSetIndexValue d (sumCommFintypeCat X Y) (mul T S h).color).symm = _ rw [Equiv.comp_symm_eq] funext i simp only [mul_coord, IndexValue, mul_color, Function.comp_apply, sumComm_apply_color] erw [sumCommIndexValue_inlIndexValue, sumCommIndexValue_inrIndexValue, ← Equiv.sum_comp (congrColorsDual h)] refine Fintype.sum_congr _ _ (fun a => ?_) rw [mul_comm] repeat apply congrArg rw [← congrColorsDual_symm h] exact (Equiv.apply_eq_iff_eq_symm_apply (congrColorsDual h)).mp rfl /-! TODO: Following the ethos of modular operads, prove properties of multiplication. -/ /-! TODO: Use `mul` to generalize to any pair of marked index. -/ /-! ## Contraction of indices -/ /-- The contraction of the marked indices in a tensor with two marked indices. -/ def contr {X : FintypeCat} (T : Marked d X 2) (h : T.markedColor ⟨0, PUnit.unit⟩ = τ (T.markedColor ⟨1, PUnit.unit⟩)) : RealLorentzTensor d X where color := T.unmarkedColor coord := fun i => ∑ x, T.coord (Equiv.cast (indexValue_eq d T.sumElimIndexColor_of_marked) (sumElimIndexValue i (T.twoMarkedIndexValue x ((congrColorsDual h) x)))) /-! TODO: Following the ethos of modular operads, prove properties of contraction. -/ /-! TODO: Use `contr` to generalize to any pair of marked index. -/ /-! ## Rising and lowering indices Rising or lowering an index corresponds to changing the color of that index. -/ /-! TODO: Define the rising and lowering of indices using contraction with the metric. -/ /-! ## Action of the Lorentz group -/ /-! TODO: Define the action of the Lorentz group on the sets of Tensors. -/ /-! ## Graphical species and Lorentz tensors -/ /-! TODO: From Lorentz tensors graphical species. -/ /-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/ end RealLorentzTensor