/- Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.FieldStruct.CreateAnnihilate import HepLean.PerturbationTheory.CreateAnnihilate /-! # Creation and annihilation sections -/ namespace FieldStruct variable {𝓕 : FieldStruct} /-- The sections in `𝓕.CreateAnnihilateStates` over a list `φs : List 𝓕.States`. In terms of physics, given some fields `φ₁...φₙ`, the different ways one can associate each field as a `creation` or an `annihilation` operator. E.g. the number of terms `φ₁⁰φ₂¹...φₙ⁰` `φ₁¹φ₂¹...φₙ⁰` etc. If some fields are exclusively creation or annihilation operators at this point (e.g. asymptotic states) this is accounted for. -/ def CreateAnnihilateSect (φs : List 𝓕.States) : Type := {ψs : List 𝓕.CreateAnnihilateStates // List.map 𝓕.createAnnihilateStatesToStates ψs = φs} -- Π i, 𝓕.statesToCreateAnnihilateType (φs.get i) namespace CreateAnnihilateSect variable {𝓕 : FieldStruct} {φs : List 𝓕.States} @[simp] lemma length_eq (ψs : CreateAnnihilateSect φs) : ψs.1.length = φs.length := by simpa using congrArg List.length ψs.2 /-- The tail of a section for `φs`. -/ def tail : {φs : List 𝓕.States} → (ψs : CreateAnnihilateSect φs) → CreateAnnihilateSect φs.tail | [], ⟨[], h⟩ => ⟨[], h⟩ | φ :: φs, ⟨[], h⟩ => False.elim (by simp at h) | φ :: φs, ⟨ψ :: ψs, h⟩ => ⟨ψs, by rw [List.map_cons, List.cons.injEq] at h; exact h.2⟩ lemma head_state_eq {φ : 𝓕.States} : (ψs : CreateAnnihilateSect (φ :: φs)) → (ψs.1.head (by simp [← List.length_pos_iff_ne_nil])).1 = φ | ⟨[], h⟩ => False.elim (by simp at h) | ⟨ψ :: ψs, h⟩ => by simp at h exact h.1 /-- The head of a section for `φ :: φs` as an element in `𝓕.statesToCreateAnnihilateType φ`. -/ def head : {φ : 𝓕.States} → (ψs : CreateAnnihilateSect (φ :: φs)) → 𝓕.statesToCreateAnnihilateType φ | φ, ⟨[], h⟩ => False.elim (by simp at h) | φ, ⟨ψ :: ψs, h⟩ => 𝓕.statesToCreateAnnihilateTypeCongr (by simpa using head_state_eq ⟨ψ :: ψs, h⟩) ψ.2 lemma eq_head_cons_tail {φ : 𝓕.States} {ψs : CreateAnnihilateSect (φ :: φs)} : ψs.1 = ⟨φ, head ψs⟩ :: ψs.tail.1 := by match ψs with | ⟨[], h⟩ => exact False.elim (by simp at h) | ⟨ψ :: ψs, h⟩ => have h2 := head_state_eq ⟨ψ :: ψs, h⟩ simp at h2 subst h2 rfl /-- The creation of a section from for `φ : φs` from a section for `φs` and a element of `𝓕.statesToCreateAnnihilateType φ`. -/ def cons {φ : 𝓕.States} (ψ : 𝓕.statesToCreateAnnihilateType φ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φ :: φs) := ⟨⟨φ, ψ⟩ :: ψs.1, by simp [List.map_cons, ψs.2]⟩ /-- The creation and annihilation sections for a singleton list is given by a choice of `𝓕.statesToCreateAnnihilateType φ`. If `φ` is a asymptotic state there is no choice here, else there are two choices. -/ def singletonEquiv {φ : 𝓕.States} : CreateAnnihilateSect [φ] ≃ 𝓕.statesToCreateAnnihilateType φ where toFun ψs := ψs.head invFun ψ := ⟨[⟨φ, ψ⟩], by simp⟩ left_inv ψs := by apply Subtype.ext simp only have h1 := eq_head_cons_tail (ψs := ψs) rw [h1] have h2 := ψs.tail.2 simp at h2 simp [h2] right_inv ψ := by simp [head] rfl /-- An equivalence separating the head of a creation and annihilation section from the tail. -/ def consEquiv {φ : 𝓕.States} {φs : List 𝓕.States} : CreateAnnihilateSect (φ :: φs) ≃ 𝓕.statesToCreateAnnihilateType φ × CreateAnnihilateSect φs where toFun ψs := ⟨ψs.head, ψs.tail⟩ invFun ψψs := match ψψs with | (ψ, ψs) => cons ψ ψs left_inv ψs := by apply Subtype.ext exact Eq.symm eq_head_cons_tail right_inv ψψs := by match ψψs with | (ψ, ψs) => rfl /-- The equivalence between `CreateAnnihilateSect φs` and `CreateAnnihilateSect φs'` induced by an equality `φs = φs'`. -/ def congr : {φs φs' : List 𝓕.States} → (h : φs = φs') → CreateAnnihilateSect φs ≃ CreateAnnihilateSect φs' | _, _, rfl => Equiv.refl _ @[simp] lemma congr_fst {φs φs' : List 𝓕.States} (h : φs = φs') (ψs : CreateAnnihilateSect φs) : (congr h ψs).1 = ψs.1 := by cases h rfl /-- Returns the first `n` elements of a section and its underlying list. -/ def take (n : ℕ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.take n) := ⟨ψs.1.take n, by simp [ψs.2]⟩ /-- Removes the first `n` elements of a section and its underlying list. -/ def drop (n : ℕ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.drop n) := ⟨ψs.1.drop n, by simp [ψs.2]⟩ /-- Appends two sections and their underlying lists. -/ def append {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs) (ψs' : CreateAnnihilateSect φs') : CreateAnnihilateSect (φs ++ φs') := ⟨ψs.1 ++ ψs'.1, by simp [ψs.2, ψs'.2]⟩ @[simp] lemma take_append_drop {n : ℕ} (ψs : CreateAnnihilateSect φs) : append (take n ψs) (drop n ψs) = congr (List.take_append_drop n φs).symm ψs := by apply Subtype.ext simp [take, drop, append] @[simp] lemma congr_append {φs1 φs1' φs2 φs2' : List 𝓕.States} (h1 : φs1 = φs1') (h2 : φs2 = φs2') (ψs1 : CreateAnnihilateSect φs1) (ψs2 : CreateAnnihilateSect φs2) : (append (congr h1 ψs1) (congr h2 ψs2)) = congr (by rw [h1, h2]) (append ψs1 ψs2) := by subst h1 h2 rfl @[simp] lemma take_left {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs) (ψs' : CreateAnnihilateSect φs') : take φs.length (ψs.append ψs') = congr (by simp) ψs := by apply Subtype.ext simp [take, append] @[simp] lemma drop_left {φs φs' : List 𝓕.States} (ψs : CreateAnnihilateSect φs) (ψs' : CreateAnnihilateSect φs') : drop φs.length (ψs.append ψs') = congr (by simp) ψs' := by apply Subtype.ext simp [drop, append] /-- The equivalence between `CreateAnnihilateSect (φs ++ φs')` and `CreateAnnihilateSect φs × CreateAnnihilateSect φs` formed by `append`, `take` and `drop` and their interrelationship. -/ def appendEquiv {φs φs' : List 𝓕.States} : CreateAnnihilateSect (φs ++ φs') ≃ CreateAnnihilateSect φs × CreateAnnihilateSect φs' where toFun ψs := (congr (List.take_left φs φs') (take φs.length ψs), congr (List.drop_left φs φs') (drop φs.length ψs)) invFun ψsψs' := append ψsψs'.1 ψsψs'.2 left_inv ψs := by apply Subtype.ext simp right_inv ψsψs' := by match ψsψs' with | (ψs, ψs') => simp only [take_left, drop_left, Prod.mk.injEq] refine And.intro (Subtype.ext ?_) (Subtype.ext ?_) · simp · simp @[simp] lemma _root_.List.map_eraseIdx {α β : Type} (f : α → β) : (l : List α) → (n : ℕ) → List.map f (l.eraseIdx n) = (List.map f l).eraseIdx n | [], _ => rfl | a :: l, 0 => rfl | a :: l, n+1 => by simp only [List.eraseIdx, List.map_cons, List.cons.injEq, true_and] exact List.map_eraseIdx f l n /-- Erasing an element from a section and it's underlying list. -/ def eraseIdx (n : ℕ) (ψs : CreateAnnihilateSect φs) : CreateAnnihilateSect (φs.eraseIdx n) := ⟨ψs.1.eraseIdx n, by simp [ψs.2]⟩ /-- The equivalence formed by extracting an element from a section. -/ def eraseIdxEquiv (n : ℕ) (φs : List 𝓕.States) (hn : n < φs.length) : CreateAnnihilateSect φs ≃ 𝓕.statesToCreateAnnihilateType φs[n] × CreateAnnihilateSect (φs.eraseIdx n) := (congr (by simp only [List.take_concat_get', List.take_append_drop])).trans <| appendEquiv.trans <| (Equiv.prodCongr (appendEquiv.trans (Equiv.prodComm _ _)) (Equiv.refl _)).trans <| (Equiv.prodAssoc _ _ _).trans <| Equiv.prodCongr singletonEquiv <| appendEquiv.symm.trans <| congr (List.eraseIdx_eq_take_drop_succ φs n).symm @[simp] lemma eraseIdxEquiv_apply_snd {n : ℕ} (ψs : CreateAnnihilateSect φs) (hn : n < φs.length) : (eraseIdxEquiv n φs hn ψs).snd = eraseIdx n ψs := by apply Subtype.ext simp only [eraseIdxEquiv, appendEquiv, take, List.take_concat_get', List.length_take, drop, append, Equiv.trans_apply, Equiv.coe_fn_mk, congr_fst, Equiv.prodCongr_apply, Equiv.coe_trans, Equiv.coe_prodComm, Equiv.coe_refl, Prod.map_apply, Function.comp_apply, Prod.swap_prod_mk, id_eq, Equiv.prodAssoc_apply, Equiv.coe_fn_symm_mk, eraseIdx] rw [Nat.min_eq_left (Nat.le_of_succ_le hn), Nat.min_eq_left hn, List.take_take] simp only [Nat.succ_eq_add_one, le_add_iff_nonneg_right, zero_le, inf_of_le_left] exact Eq.symm (List.eraseIdx_eq_take_drop_succ ψs.1 n) end CreateAnnihilateSect end FieldStruct