/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzVector.NormOne import HepLean.SpaceTime.LorentzGroup.Proper /-! # The Orthochronous Lorentz Group We define the give a series of lemmas related to the orthochronous property of lorentz matrices. ## TODO - Prove topological properties. -/ noncomputable section open Matrix open Complex open ComplexConjugate namespace LorentzGroup variable {d : ℕ} variable (Λ : LorentzGroup d) open LorentzVector open minkowskiMetric /-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/ def IsOrthochronous : Prop := 0 ≤ timeComp Λ lemma IsOrthochronous_iff_futurePointing : IsOrthochronous Λ ↔ (toNormOneLorentzVector Λ) ∈ NormOneLorentzVector.FuturePointing d := by simp only [IsOrthochronous, timeComp_eq_toNormOneLorentzVector] rw [NormOneLorentzVector.FuturePointing.mem_iff_time_nonneg] lemma IsOrthochronous_iff_transpose : IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by rfl lemma IsOrthochronous_iff_ge_one : IsOrthochronous Λ ↔ 1 ≤ timeComp Λ := by rw [IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.mem_iff, NormOneLorentzVector.time_pos_iff] simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue] erw [Pi.basisFun_apply, mulVec_stdBasis] rfl lemma not_orthochronous_iff_le_neg_one : ¬ IsOrthochronous Λ ↔ timeComp Λ ≤ -1 := by rw [timeComp, IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.not_mem_iff, NormOneLorentzVector.time_nonpos_iff] simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue] erw [Pi.basisFun_apply, mulVec_stdBasis] lemma not_orthochronous_iff_le_zero : ¬ IsOrthochronous Λ ↔ timeComp Λ ≤ 0 := by refine Iff.intro (fun h => ?_) (fun h => ?_) rw [not_orthochronous_iff_le_neg_one] at h linarith rw [IsOrthochronous_iff_ge_one] linarith /-- The continuous map taking a Lorentz transformation to its `0 0` element. -/ def timeCompCont : C(LorentzGroup d, ℝ) := ⟨fun Λ => timeComp Λ , Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩ /-- An auxillary function used in the definition of `orthchroMapReal`. -/ def stepFunction : ℝ → ℝ := fun t => if t ≤ -1 then -1 else if 1 ≤ t then 1 else t lemma stepFunction_continuous : Continuous stepFunction := by apply Continuous.if ?_ continuous_const (Continuous.if ?_ continuous_const continuous_id) <;> intro a ha rw [@Set.Iic_def, @frontier_Iic, @Set.mem_singleton_iff] at ha rw [ha] simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte] have h1 : ¬ (1 : ℝ) ≤ 0 := by simp exact Eq.symm (if_neg h1) rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha exact id (Eq.symm ha) /-- The continuous map from `lorentzGroup` to `ℝ` wh taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/ def orthchroMapReal : C(LorentzGroup d, ℝ) := ContinuousMap.comp ⟨stepFunction, stepFunction_continuous⟩ timeCompCont lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) : orthchroMapReal Λ = 1 := by rw [IsOrthochronous_iff_ge_one, timeComp] at h change stepFunction (Λ.1 _ _) = 1 rw [stepFunction, if_pos h, if_neg] linarith lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) : orthchroMapReal Λ = - 1 := by rw [not_orthochronous_iff_le_neg_one] at h change stepFunction (timeComp _)= - 1 rw [stepFunction, if_pos h] lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup d) : orthchroMapReal Λ = -1 ∨ orthchroMapReal Λ = 1 := by by_cases h : IsOrthochronous Λ apply Or.inr $ orthchroMapReal_on_IsOrthochronous h apply Or.inl $ orthchroMapReal_on_not_IsOrthochronous h local notation "ℤ₂" => Multiplicative (ZMod 2) /-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/ def orthchroMap : C(LorentzGroup d, ℤ₂) := ContinuousMap.comp coeForℤ₂ { toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩, continuous_toFun := Continuous.subtype_mk (ContinuousMap.continuous orthchroMapReal) _} lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) : orthchroMap Λ = 1 := by simp [orthchroMap, orthchroMapReal_on_IsOrthochronous h] lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) : orthchroMap Λ = Additive.toMul (1 : ZMod 2) := by simp [orthchroMap, orthchroMapReal_on_not_IsOrthochronous h] rfl lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ) (h' : IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_futurePointing] at h h' rw [IsOrthochronous, timeComp_mul] exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_mem h h' lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ) (h' : ¬ IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_futurePointing] at h h' rw [IsOrthochronous, timeComp_mul] exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_not_mem h h' lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ) (h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [not_orthochronous_iff_le_zero, timeComp_mul] rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_futurePointing] at h h' exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_not_mem h h' lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ) (h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [not_orthochronous_iff_le_zero, timeComp_mul] rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_futurePointing] at h h' exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_mem h h' /-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/ def orthchroRep : LorentzGroup d →* ℤ₂ where toFun := orthchroMap map_one' := orthchroMap_IsOrthochronous (by simp [IsOrthochronous]) map_mul' Λ Λ' := by simp only by_cases h : IsOrthochronous Λ <;> by_cases h' : IsOrthochronous Λ' rw [orthchroMap_IsOrthochronous h, orthchroMap_IsOrthochronous h', orthchroMap_IsOrthochronous (mul_othchron_of_othchron_othchron h h')] rfl rw [orthchroMap_IsOrthochronous h, orthchroMap_not_IsOrthochronous h', orthchroMap_not_IsOrthochronous (mul_not_othchron_of_othchron_not_othchron h h')] rfl rw [orthchroMap_not_IsOrthochronous h, orthchroMap_IsOrthochronous h', orthchroMap_not_IsOrthochronous (mul_not_othchron_of_not_othchron_othchron h h')] rfl rw [orthchroMap_not_IsOrthochronous h, orthchroMap_not_IsOrthochronous h', orthchroMap_IsOrthochronous (mul_othchron_of_not_othchron_not_othchron h h')] rfl end LorentzGroup end