/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.ComplexLorentz.BasisTrees /-! ## Lowering indices of Pauli matrices. -/ open IndexNotation open CategoryTheory open MonoidalCategory open Matrix open MatrixGroups open Complex open TensorProduct open IndexNotation open CategoryTheory open TensorTree open OverColor.Discrete noncomputable section namespace Fermion open complexLorentzTensor /-- The map to color one gets when lowering the indices of pauli matrices. -/ def pauliCoMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 1 ∘ Fin.succAbove 1) lemma pauliMatrix_contr_down_0 : (contr 1 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 1 funext k fin_cases k <;> rfl · rw [basisVectorContrPauli] congr 1 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_1 : {(basisVector ![Color.down, Color.down] fun x => 1) | ν μ ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 1 funext k fin_cases k <;> rfl · rw [basisVectorContrPauli] congr 1 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_2 : {(basisVector ![Color.down, Color.down] fun x => 2) | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor = (- I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1) + (I) • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_pos (by decide)] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_neg (by decide)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 2 funext k fin_cases k <;> rfl · rw [basisVectorContrPauli] congr 2 funext k fin_cases k <;> rfl lemma pauliMatrix_contr_down_3 : {(basisVector ![Color.down, Color.down] fun x => 3) | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor = basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + (- 1 : ℂ) • basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by conv => lhs rw [basis_contr_pauliMatrix_basis_tree_expand_tensor] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; lhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; lhs; rhs; rhs; lhs rw [contrBasisVectorMul_neg (by decide)] conv => lhs; lhs; rhs; lhs; rw [contrBasisVectorMul_pos (by decide)] conv => lhs; rhs; rhs; lhs; rw [contrBasisVectorMul_pos (by decide)] conv => lhs simp only [_root_.zero_smul, one_smul, _root_.smul_zero, _root_.add_zero, _root_.zero_add] congr 1 · rw [basisVectorContrPauli] congr 1 funext k fin_cases k <;> rfl · rw [basisVectorContrPauli] congr 1 congr 1 funext k fin_cases k <;> rfl def pauliCo := {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor lemma tensoreNode_pauliCo : (tensorNode pauliCo).tensor = {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | ν α β}ᵀ.tensor := by rw [pauliCo] rfl set_option profiler true set_option profiler.threshold 10 lemma pauliCo_basis_expand : pauliCo = basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1) - basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1) - basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0) + I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1) - I • basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0) - basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by conv => lhs rw [pauliCo] rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree] /- Moving the prod through additions. -/ rw [contr_tensor_eq <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_prod _ _ _] /- Moving contraction through addition. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contraction through smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] simp only [tensorNode_tensor, add_tensor, smul_tensor] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, neg_smul, one_smul] conv => lhs; lhs; rw [pauliMatrix_contr_down_0] conv => lhs; rhs; lhs; rhs; rw [pauliMatrix_contr_down_1] conv => lhs; rhs; rhs; lhs; rhs; rw [pauliMatrix_contr_down_2] conv => lhs; rhs; rhs; rhs; rhs; rw [pauliMatrix_contr_down_3] simp only [neg_smul, one_smul] abel lemma pauliCo_basis_expand_tree : pauliCo = (TensorTree.add (tensorNode (basisVector pauliCoMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| TensorTree.add (tensorNode (basisVector pauliCoMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul I (tensorNode (basisVector pauliCoMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <| TensorTree.add (TensorTree.smul (-I) (tensorNode (basisVector pauliCoMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <| TensorTree.add (TensorTree.smul (-1) (tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <| (tensorNode (basisVector pauliCoMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by rw [pauliCo_basis_expand] simp only [Nat.reduceAdd, Fin.isValue, add_tensor, tensorNode_tensor, smul_tensor, neg_smul, one_smul] rfl lemma pauliCo_prod_basis_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) : (prod (tensorNode pauliCo) t).tensor = (((tensorNode (basisVector pauliCoMap fun | 0 => 0 | 1 => 0 | 2 => 0)).prod t).add (((tensorNode (basisVector pauliCoMap fun | 0 => 0 | 1 => 1 | 2 => 1)).prod t).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 1 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 1 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul I ((tensorNode (basisVector pauliCoMap fun | 0 => 2 | 1 => 0 | 2 => 1)).prod t)).add ((TensorTree.smul (-I) ((tensorNode (basisVector pauliCoMap fun | 0 => 2 | 1 => 1 | 2 => 0)).prod t)).add ((TensorTree.smul (-1) ((tensorNode (basisVector pauliCoMap fun | 0 => 3 | 1 => 0 | 2 => 0)).prod t)).add ((tensorNode (basisVector pauliCoMap fun | 0 => 3 | 1 => 1 | 2 => 1)).prod t)))))))).tensor := by rw [prod_tensor_eq_fst <| tensoreNode_pauliCo] rw [prod_tensor_eq_fst <| pauliCo_basis_expand_tree] /- Moving the prod through additions. -/ rw [add_prod _ _ _] rw [add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] /- Moving the prod through smuls. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] end Fermion