/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Mathematics.List import HepLean.PerturbationTheory.Wick.Signs.SuperCommuteCoef /-! # Insert sign -/ namespace Wick open HepLean.List open FieldStatistic section /-! ## Basic properties of lists To be replaced with Mathlib or Lean definitions when/where appropraite. -/ lemma take_insert_same {I : Type} (i : I) : (n : ℕ) → (r : List I) → List.take n (List.insertIdx n i r) = List.take n r | 0, _ => by simp | _+1, [] => by simp | n+1, a::as => by simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and] exact take_insert_same i n as lemma take_eraseIdx_same {I : Type} : (n : ℕ) → (r : List I) → List.take n (List.eraseIdx r n) = List.take n r | 0, _ => by simp | _+1, [] => by simp | n+1, a::as => by simp only [List.eraseIdx_cons_succ, List.take_succ_cons, List.cons.injEq, true_and] exact take_eraseIdx_same n as lemma take_insert_gt {I : Type} (i : I) : (n m : ℕ) → (h : n < m) → (r : List I) → List.take n (List.insertIdx m i r) = List.take n r | 0, 0, _, _ => by simp | 0, m + 1, _, _ => by simp | n+1, m + 1, _, [] => by simp | n+1, m + 1, h, a::as => by simp only [List.insertIdx_succ_cons, List.take_succ_cons, List.cons.injEq, true_and] refine take_insert_gt i n m (Nat.succ_lt_succ_iff.mp h) as lemma take_insert_let {I : Type} (i : I) : (n m : ℕ) → (h : m ≤ n) → (r : List I) → (hm : m ≤ r.length) → (List.take (n + 1) (List.insertIdx m i r)).Perm (i :: List.take n r) | 0, 0, h, _, _ => by simp | m + 1, 0, h, r, _ => by simp | n + 1, m + 1, h, [], hm => by simp at hm | n + 1, m + 1, h, a::as, hm => by simp only [List.insertIdx_succ_cons, List.take_succ_cons] have hp : (i :: a :: List.take n as).Perm (a :: i :: List.take n as) := by exact List.Perm.swap a i (List.take n as) refine List.Perm.trans ?_ hp.symm refine List.Perm.cons a ?_ exact take_insert_let i n m (Nat.le_of_succ_le_succ h) as (Nat.le_of_succ_le_succ hm) end /-! ## Insert sign -/ section InsertSign variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) /-- The sign associated with inserting `r0` into `r` at the position `n`. That is the sign associated with commuting `r0` with `List.take n r`. -/ def insertSign (n : ℕ) (r0 : 𝓕) (r : List 𝓕) : ℂ := superCommuteCoef q [r0] (List.take n r) lemma insertSign_insert (n : ℕ) (r0 : 𝓕) (r : List 𝓕) : insertSign q n r0 r = insertSign q n r0 (List.insertIdx n r0 r) := by simp only [insertSign] congr 1 rw [take_insert_same] lemma insertSign_eraseIdx (n : ℕ) (r0 : 𝓕) (r : List 𝓕) : insertSign q n r0 (r.eraseIdx n) = insertSign q n r0 r := by simp only [insertSign] congr 1 rw [take_eraseIdx_same] lemma insertSign_zero (r0 : 𝓕) (r : List 𝓕) : insertSign q 0 r0 r = 1 := by simp [insertSign, superCommuteCoef] lemma insertSign_succ_cons (n : ℕ) (r0 r1 : 𝓕) (r : List 𝓕) : insertSign q (n + 1) r0 (r1 :: r) = superCommuteCoef q [r0] [r1] * insertSign q n r0 r := by simp only [insertSign, List.take_succ_cons] rw [superCommuteCoef_cons] lemma insertSign_insert_gt (n m : ℕ) (r0 r1 : 𝓕) (r : List 𝓕) (hn : n < m) : insertSign q n r0 (List.insertIdx m r1 r) = insertSign q n r0 r := by rw [insertSign, insertSign] congr 1 exact take_insert_gt r1 n m hn r lemma insertSign_insert_lt_eq_insertSort (n m : ℕ) (r0 r1 : 𝓕) (r : List 𝓕) (hn : m ≤ n) (hm : m ≤ r.length) : insertSign q (n + 1) r0 (List.insertIdx m r1 r) = insertSign q (n + 1) r0 (r1 :: r) := by rw [insertSign, insertSign] apply superCommuteCoef_perm_snd simp only [List.take_succ_cons] refine take_insert_let r1 n m hn r hm lemma insertSign_insert_lt (n m : ℕ) (r0 r1 : 𝓕) (r : List 𝓕) (hn : m ≤ n) (hm : m ≤ r.length) : insertSign q (n + 1) r0 (List.insertIdx m r1 r) = superCommuteCoef q [r0] [r1] * insertSign q n r0 r := by rw [insertSign_insert_lt_eq_insertSort, insertSign_succ_cons] exact hn exact hm end InsertSign end Wick