/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.PerturbationTheory.Wick.Signs.InsertSign /-! # Koszul sign insert -/ namespace Wick open HepLean.List open FieldStatistic variable {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] /-- Gives a factor of `-1` when inserting `a` into a list `List I` in the ordered position for each fermion-fermion cross. -/ def koszulSignInsert {𝓕 : Type} (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] (a : 𝓕) : List 𝓕 → ℂ | [] => 1 | b :: l => if le a b then koszulSignInsert q le a l else if q a = fermionic ∧ q b = fermionic then - koszulSignInsert q le a l else koszulSignInsert q le a l /-- When inserting a boson the `koszulSignInsert` is always `1`. -/ lemma koszulSignInsert_boson (q : 𝓕 → FieldStatistic) (le : 𝓕 → 𝓕 → Prop) [DecidableRel le] (a : 𝓕) (ha : q a = bosonic) : (l : List 𝓕) → koszulSignInsert q le a l = 1 | [] => by simp [koszulSignInsert] | b :: l => by simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff] rw [koszulSignInsert_boson q le a ha l, ha] simp only [reduceCtorEq, false_and, ↓reduceIte, ite_self] @[simp] lemma koszulSignInsert_mul_self (a : 𝓕) : (l : List 𝓕) → koszulSignInsert q le a l * koszulSignInsert q le a l = 1 | [] => by simp [koszulSignInsert] | b :: l => by simp only [koszulSignInsert, Fin.isValue, mul_ite, ite_mul, neg_mul, mul_neg] by_cases hr : le a b · simp only [hr, ↓reduceIte] rw [koszulSignInsert_mul_self] · simp only [hr, ↓reduceIte] by_cases hq : q a = fermionic ∧ q b = fermionic · simp only [hq, and_self, ↓reduceIte, neg_neg] rw [koszulSignInsert_mul_self] · simp only [hq, ↓reduceIte] rw [koszulSignInsert_mul_self] lemma koszulSignInsert_le_forall (a : 𝓕) (l : List 𝓕) (hi : ∀ b, le a b) : koszulSignInsert q le a l = 1 := by induction l with | nil => rfl | cons j l ih => simp only [koszulSignInsert, Fin.isValue, ite_eq_left_iff] rw [ih] simp only [Fin.isValue, ite_eq_left_iff, ite_eq_right_iff, and_imp] intro h exact False.elim (h (hi j)) lemma koszulSignInsert_ge_forall_append (l : List 𝓕) (j i : 𝓕) (hi : ∀ j, le j i) : koszulSignInsert q le j l = koszulSignInsert q le j (l ++ [i]) := by induction l with | nil => simp [koszulSignInsert, hi] | cons b l ih => simp only [koszulSignInsert, Fin.isValue, List.append_eq] by_cases hr : le j b · rw [if_pos hr, if_pos hr, ih] · rw [if_neg hr, if_neg hr, ih] lemma koszulSignInsert_eq_filter (r0 : 𝓕) : (r : List 𝓕) → koszulSignInsert q le r0 r = koszulSignInsert q le r0 (List.filter (fun i => decide (¬ le r0 i)) r) | [] => by simp [koszulSignInsert] | r1 :: r => by dsimp only [koszulSignInsert, Fin.isValue] simp only [Fin.isValue, List.filter, decide_not] by_cases h : le r0 r1 · simp only [h, ↓reduceIte, decide_True, Bool.not_true] rw [koszulSignInsert_eq_filter] congr simp · simp only [h, ↓reduceIte, Fin.isValue, decide_False, Bool.not_false] dsimp only [Fin.isValue, koszulSignInsert] simp only [Fin.isValue, h, ↓reduceIte] rw [koszulSignInsert_eq_filter] congr simp only [decide_not] simp lemma koszulSignInsert_eq_cons [IsTotal 𝓕 le] (r0 : 𝓕) (r : List 𝓕) : koszulSignInsert q le r0 r = koszulSignInsert q le r0 (r0 :: r) := by simp only [koszulSignInsert, Fin.isValue, and_self] have h1 : le r0 r0 := by simpa using IsTotal.total (r := le) r0 r0 simp [h1] lemma koszulSignInsert_eq_grade (r0 : 𝓕) (r : List 𝓕) : koszulSignInsert q le r0 r = if ofList q [r0] = fermionic ∧ ofList q (List.filter (fun i => decide (¬ le r0 i)) r) = fermionic then -1 else 1 := by induction r with | nil => simp [koszulSignInsert] | cons r1 r ih => rw [koszulSignInsert_eq_filter] by_cases hr1 : ¬ le r0 r1 · rw [List.filter_cons_of_pos] · dsimp only [koszulSignInsert, Fin.isValue, decide_not] rw [if_neg hr1] dsimp only [Fin.isValue, ofList, ite_eq_right_iff, zero_ne_one, imp_false, decide_not] simp only [decide_not, ite_eq_right_iff, reduceCtorEq, imp_false] have ha (a b c : FieldStatistic) : (if a = fermionic ∧ b = fermionic then -if ¬a = bosonic ∧ c = fermionic then -1 else (1 : ℂ) else if ¬a = bosonic ∧ c = fermionic then -1 else 1) = if ¬a = bosonic ∧ ¬b = c then -1 else 1 := by fin_cases a <;> fin_cases b <;> fin_cases c any_goals rfl simp rw [← ha (q r0) (q r1) (ofList q (List.filter (fun a => !decide (le r0 a)) r))] congr · rw [koszulSignInsert_eq_filter] at ih simpa [ofList] using ih · rw [koszulSignInsert_eq_filter] at ih simpa [ofList] using ih · simp [hr1] · rw [List.filter_cons_of_neg] simp only [decide_not, Fin.isValue] rw [koszulSignInsert_eq_filter] at ih simpa [ofList] using ih simpa using hr1 lemma koszulSignInsert_eq_perm (r r' : List 𝓕) (a : 𝓕) (h : r.Perm r') : koszulSignInsert q le a r = koszulSignInsert q le a r' := by rw [koszulSignInsert_eq_grade] rw [koszulSignInsert_eq_grade] congr 1 simp only [Fin.isValue, decide_not, eq_iff_iff, and_congr_right_iff] intro h' have hg : ofList q (List.filter (fun i => !decide (le a i)) r) = ofList q (List.filter (fun i => !decide (le a i)) r') := by apply ofList_perm exact List.Perm.filter (fun i => !decide (le a i)) h rw [hg] lemma koszulSignInsert_eq_sort (r : List 𝓕) (a : 𝓕) : koszulSignInsert q le a r = koszulSignInsert q le a (List.insertionSort le r) := by apply koszulSignInsert_eq_perm exact List.Perm.symm (List.perm_insertionSort le r) lemma koszulSignInsert_eq_insertSign [IsTotal 𝓕 le] [IsTrans 𝓕 le] (r0 : 𝓕) (r : List 𝓕) : koszulSignInsert q le r0 r = insertSign q (orderedInsertPos le (List.insertionSort le r) r0) r0 (List.insertionSort le r) := by rw [koszulSignInsert_eq_cons, koszulSignInsert_eq_sort, koszulSignInsert_eq_filter, koszulSignInsert_eq_grade, insertSign, superCommuteCoef] congr simp only [List.filter_filter, Bool.and_self] rw [List.insertionSort] nth_rewrite 1 [List.orderedInsert_eq_take_drop] rw [List.filter_append] have h1 : List.filter (fun a => decide ¬le r0 a) (List.takeWhile (fun b => decide ¬le r0 b) (List.insertionSort le r)) = (List.takeWhile (fun b => decide ¬le r0 b) (List.insertionSort le r)) := by induction r with | nil => simp | cons r1 r ih => simp only [decide_not, List.insertionSort, List.filter_eq_self, Bool.not_eq_eq_eq_not, Bool.not_true, decide_eq_false_iff_not] intro a ha have ha' := List.mem_takeWhile_imp ha simp_all rw [h1] rw [List.filter_cons] simp only [decide_not, (IsTotal.to_isRefl le).refl r0, not_true_eq_false, decide_False, Bool.false_eq_true, ↓reduceIte] rw [orderedInsertPos_take] simp only [decide_not, List.append_right_eq_self, List.filter_eq_nil_iff, Bool.not_eq_eq_eq_not, Bool.not_true, decide_eq_false_iff_not, Decidable.not_not] intro a ha refine List.Sorted.rel_of_mem_take_of_mem_drop (k := (orderedInsertPos le (List.insertionSort le r) r0).1 + 1) (List.sorted_insertionSort le (r0 :: r)) ?_ ?_ · simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not] rw [List.take_append_eq_append_take] rw [List.take_of_length_le] · simp [orderedInsertPos] · simp [orderedInsertPos] · simp only [List.insertionSort, List.orderedInsert_eq_take_drop, decide_not] rw [List.drop_append_eq_append_drop] rw [List.drop_of_length_le] · simpa [orderedInsertPos] using ha · simp [orderedInsertPos] lemma koszulSignInsert_insertIdx (i j : 𝓕) (r : List 𝓕) (n : ℕ) (hn : n ≤ r.length) : koszulSignInsert q le j (List.insertIdx n i r) = koszulSignInsert q le j (i :: r) := by apply koszulSignInsert_eq_perm exact List.perm_insertIdx i r hn /-- The difference in `koszulSignInsert` on inserting `r0` into `r` compared to into `r1 :: r` for any `r`. -/ def koszulSignCons (r0 r1 : 𝓕) : ℂ := if le r0 r1 then 1 else if q r0 = fermionic ∧ q r1 = fermionic then -1 else 1 lemma koszulSignCons_eq_superComuteCoef (r0 r1 : 𝓕) : koszulSignCons q le r0 r1 = if le r0 r1 then 1 else superCommuteCoef q [r0] [r1] := by simp only [koszulSignCons, Fin.isValue, superCommuteCoef, ofList, ite_eq_right_iff, zero_ne_one, imp_false] congr 1 by_cases h0 : q r0 = fermionic · by_cases h1 : q r1 = fermionic · simp [h0, h1] · have h1 : q r1 = bosonic := (neq_fermionic_iff_eq_bosonic (q r1)).mp h1 simp [h0, h1] · have h0 : q r0 = bosonic := (neq_fermionic_iff_eq_bosonic (q r0)).mp h0 by_cases h1 : q r1 = fermionic · simp [h0, h1] · have h1 : q r1 = bosonic := (neq_fermionic_iff_eq_bosonic (q r1)).mp h1 simp [h0, h1] lemma koszulSignInsert_cons (r0 r1 : 𝓕) (r : List 𝓕) : koszulSignInsert q le r0 (r1 :: r) = (koszulSignCons q le r0 r1) * koszulSignInsert q le r0 r := by simp [koszulSignInsert, koszulSignCons] end Wick