/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Geometry.Manifold.Instances.Real import HepLean.SpaceTime.Basic import HepLean.Meta.Informal.Basic /-! # The Standard Model This file defines the basic properties of the standard model in particle physics. -/ /-! TODO: Redefine the gauge group as a quotient of SU(3) x SU(2) x U(1) by a subgroup of ℤ₆. -/ universe v u namespace StandardModel open Manifold open Matrix open Complex open ComplexConjugate /-- The global gauge group of the Standard Model with no discrete quotients. The `I` in the Name is an indication of the statement that this has no discrete quotients. -/ abbrev GaugeGroupI : Type := specialUnitaryGroup (Fin 3) ℂ × specialUnitaryGroup (Fin 2) ℂ × unitary ℂ informal_definition gaugeGroupℤ₆SubGroup where physics :≈ "The subgroup of the un-quotiented gauge group which acts trivially on all particles in the standard model. " math :≈ "The ℤ₆-subgroup of ``GaugeGroupI with elements (α^2 * I₃, α^(-3) * I₂, α), where `α` is a sixth complex root of unity." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI] informal_definition GaugeGroupℤ₆ where physics :≈ "The smallest possible gauge group of the Standard Model." math :≈ "The quotient of ``GaugeGroupI by the ℤ₆-subgroup `gaugeGroupℤ₆SubGroup`." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup] informal_definition gaugeGroupℤ₂SubGroup where physics :≈ "The ℤ₂subgroup of the un-quotiented gauge group which acts trivially on all particles in the standard model. " math :≈ "The ℤ₂-subgroup of ``GaugeGroupI derived from the ℤ₂ subgroup of `gaugeGroupℤ₆SubGroup`." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup] informal_definition GaugeGroupℤ₂ where physics :≈ "The guage group of the Standard Model with a ℤ₂ quotient." math :≈ "The quotient of ``GaugeGroupI by the ℤ₂-subgroup `gaugeGroupℤ₂SubGroup`." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₂SubGroup] informal_definition gaugeGroupℤ₃SubGroup where physics :≈ "The ℤ₃-subgroup of the un-quotiented gauge group which acts trivially on all particles in the standard model. " math :≈ "The ℤ₃-subgroup of ``GaugeGroupI derived from the ℤ₃ subgroup of `gaugeGroupℤ₆SubGroup`." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₆SubGroup] informal_definition GaugeGroupℤ₃ where physics :≈ "The guage group of the Standard Model with a ℤ₃-quotient." math :≈ "The quotient of ``GaugeGroupI by the ℤ₃-subgroup `gaugeGroupℤ₃SubGroup`." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``StandardModel.gaugeGroupℤ₃SubGroup] /-- Specifies the allowed quotients of `SU(3) x SU(2) x U(1)` which give a valid gauge group of the Standard Model. -/ inductive GaugeGroupQuot : Type /-- The element of `GaugeGroupQuot` corresponding to the quotient of the full SM gauge group by the sub-group `ℤ₆`. -/ | ℤ₆ : GaugeGroupQuot /-- The element of `GaugeGroupQuot` corresponding to the quotient of the full SM gauge group by the sub-group `ℤ₂`. -/ | ℤ₂ : GaugeGroupQuot /-- The element of `GaugeGroupQuot` corresponding to the quotient of the full SM gauge group by the sub-group `ℤ₃`. -/ | ℤ₃ : GaugeGroupQuot /-- The element of `GaugeGroupQuot` corresponding to the full SM gauge group. -/ | I : GaugeGroupQuot informal_definition GaugeGroup where physics :≈ "The (global) gauge group of the Standard Model given a choice of quotient." math :≈ "The map from `GaugeGroupQuot` to `Type` which gives the gauge group of the Standard Model for a given choice of quotient." ref :≈ "https://math.ucr.edu/home/baez/guts.pdf" deps :≈ [``GaugeGroupI, ``gaugeGroupℤ₆SubGroup, ``gaugeGroupℤ₂SubGroup, ``gaugeGroupℤ₃SubGroup, ``GaugeGroupQuot] /-! ## Smoothness structure on the gauge group. -/ informal_lemma gaugeGroupI_lie where math :≈ "The gauge group `GaugeGroupI` is a Lie group.." deps :≈ [``GaugeGroupI] informal_lemma gaugeGroup_lie where math :≈ "For every q in ``GaugeGroupQuot the group ``GaugeGroup q is a Lie group." deps :≈ [``GaugeGroup] informal_definition gaugeBundleI where math :≈ "The trivial principal bundle over SpaceTime with structure group ``GaugeGroupI." deps :≈ [``GaugeGroupI, ``SpaceTime] informal_definition gaugeTransformI where math :≈ "A global section of ``gaugeBundleI." deps :≈ [``gaugeBundleI] end StandardModel