/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.OverColor.Discrete /-! # Tensor species - A tensor species is a structure including all of the ingredients needed to define a type of tensor. - Examples of tensor species will include real Lorentz tensors, complex Lorentz tensors, and Einstien tensors. - Tensor species are built upon symmetric monoidal categories. -/ open IndexNotation open CategoryTheory open MonoidalCategory /-- The structure of a type of tensors e.g. Lorentz tensors, ordinary tensors (vectors and matrices), complex Lorentz tensors. -/ structure TensorSpecies where /-- The commutative ring over which we want to consider the tensors to live in, usually `ℝ` or `ℂ`. -/ k : Type /-- An instance of `k` as a commutative ring. -/ k_commRing : CommRing k /-- The symmetry group acting on these tensor e.g. the Lorentz group or SL(2,ℂ). -/ G : Type /-- An instance of `G` as a group. -/ G_group : Group G /-- The colors of indices e.g. up or down. -/ C : Type /-- A functor from `C` to `Rep k G` giving our building block representations. Equivalently a function `C → Re k G`. -/ FD : Discrete C ⥤ Rep k G /-- A specification of the dimension of each color in C. This will be used for explicit evaluation of tensors. -/ repDim : C → ℕ /-- repDim is not zero for any color. This allows casting of `ℕ` to `Fin (S.repDim c)`. -/ repDim_neZero (c : C) : NeZero (repDim c) /-- A basis for each Module, determined by the evaluation map. -/ basis : (c : C) → Basis (Fin (repDim c)) k (FD.obj (Discrete.mk c)).V /-- A map from `C` to `C`. An involution. -/ τ : C → C /-- The condition that `τ` is an involution. -/ τ_involution : Function.Involutive τ /-- The natural transformation describing contraction. -/ contr : OverColor.Discrete.pairτ FD τ ⟶ 𝟙_ (Discrete C ⥤ Rep k G) /-- Contraction is symmetric with respect to duals. -/ contr_tmul_symm (c : C) (x : FD.obj (Discrete.mk c)) (y : FD.obj (Discrete.mk (τ c))) : (contr.app (Discrete.mk c)).hom (x ⊗ₜ[k] y) = (contr.app (Discrete.mk (τ c))).hom (y ⊗ₜ (FD.map (Discrete.eqToHom (τ_involution c).symm)).hom x) /-- The natural transformation describing the unit. -/ unit : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.τPair FD τ /-- The unit is symmetric. -/ unit_symm (c : C) : ((unit.app (Discrete.mk c)).hom (1 : k)) = ((FD.obj (Discrete.mk (τ (c)))) ◁ (FD.map (Discrete.eqToHom (τ_involution c)))).hom ((β_ (FD.obj (Discrete.mk (τ (τ c)))) (FD.obj (Discrete.mk (τ (c))))).hom.hom ((unit.app (Discrete.mk (τ c))).hom (1 : k))) /-- Contraction with unit leaves invariant. -/ contr_unit (c : C) (x : FD.obj (Discrete.mk (c))) : (λ_ (FD.obj (Discrete.mk (c)))).hom.hom (((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (c)))).hom ((α_ _ _ (FD.obj (Discrete.mk (c)))).inv.hom (x ⊗ₜ[k] (unit.app (Discrete.mk c)).hom (1 : k)))) = x /-- The natural transformation describing the metric. -/ metric : 𝟙_ (Discrete C ⥤ Rep k G) ⟶ OverColor.Discrete.pair FD /-- On contracting metrics we get back the unit. -/ contr_metric (c : C) : (β_ (FD.obj (Discrete.mk c)) (FD.obj (Discrete.mk (τ c)))).hom.hom (((FD.obj (Discrete.mk c)) ◁ (λ_ (FD.obj (Discrete.mk (τ c)))).hom).hom (((FD.obj (Discrete.mk c)) ◁ ((contr.app (Discrete.mk c)) ▷ (FD.obj (Discrete.mk (τ c))))).hom (((FD.obj (Discrete.mk c)) ◁ (α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (τ c))) (FD.obj (Discrete.mk (τ c)))).inv).hom ((α_ (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (c))) (FD.obj (Discrete.mk (τ c)) ⊗ FD.obj (Discrete.mk (τ c)))).hom.hom ((metric.app (Discrete.mk c)).hom (1 : k) ⊗ₜ[k] (metric.app (Discrete.mk (τ c))).hom (1 : k)))))) = (unit.app (Discrete.mk c)).hom (1 : k) noncomputable section namespace TensorSpecies open OverColor variable (S : TensorSpecies) /-- The field `k` of a TensorSpecies has the instance of a commuative ring. -/ instance : CommRing S.k := S.k_commRing /-- The field `G` of a TensorSpecies has the instance of a group. -/ instance : Group S.G := S.G_group /-- The field `repDim` of a TensorSpecies is non-zero for all colors. -/ instance (c : S.C) : NeZero (S.repDim c) := S.repDim_neZero c /-- The lift of the functor `S.F` to functor. -/ def F : Functor (OverColor S.C) (Rep S.k S.G) := ((OverColor.lift).obj S.FD).toFunctor /- The definition of `F` as a lemma. -/ lemma F_def : F S = ((OverColor.lift).obj S.FD).toFunctor := rfl /-- The functor `F` is monoidal. -/ instance F_monoidal : Functor.Monoidal S.F := lift.instMonoidalRepObjFunctorDiscreteLaxBraidedFunctor S.FD /-- The functor `F` is lax-braided. -/ instance F_laxBraided : Functor.LaxBraided S.F := lift.instLaxBraidedRepObjFunctorDiscreteLaxBraidedFunctor S.FD /-- The functor `F` is braided. -/ instance F_braided : Functor.Braided S.F := Functor.Braided.mk (fun X Y => Functor.LaxBraided.braided X Y) lemma perm_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : c (Fin.succAbove ((Hom.toEquiv σ).symm i) ((Hom.toEquiv (extractOne i σ)).symm j)) = S.τ (c ((Hom.toEquiv σ).symm i)) := by have h1 := Hom.toEquiv_comp_apply σ simp only [Nat.succ_eq_add_one, Functor.const_obj_obj, mk_hom] at h1 rw [h1, h1] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Equiv.apply_symm_apply] rw [← h] congr simp only [Nat.succ_eq_add_one, HepLean.Fin.finExtractOnePerm, HepLean.Fin.finExtractOnPermHom, HepLean.Fin.finExtractOne_symm_inr_apply, Equiv.symm_apply_apply, Equiv.coe_fn_symm_mk] erw [Equiv.apply_symm_apply] rw [HepLean.Fin.succsAbove_predAboveI] erw [Equiv.apply_symm_apply] simp only [Nat.succ_eq_add_one, ne_eq] erw [Equiv.apply_eq_iff_eq] exact (Fin.succAbove_ne i j).symm /-- Casts an element of the monoidal unit of `Rep S.k S.G` to the field `S.k`. -/ def castToField (v : (↑((𝟙_ (Discrete S.C ⥤ Rep S.k S.G)).obj { as := c }).V)) : S.k := v /-- Casts an element of `(S.F.obj (OverColor.mk c)).V` for `c` a map from `Fin 0` to an element of the field. -/ def castFin0ToField {c : Fin 0 → S.C} : (S.F.obj (OverColor.mk c)).V →ₗ[S.k] S.k := (PiTensorProduct.isEmptyEquiv (Fin 0)).toLinearMap lemma castFin0ToField_tprod {c : Fin 0 → S.C} (x : (i : Fin 0) → S.FD.obj (Discrete.mk (c i))) : castFin0ToField S (PiTensorProduct.tprod S.k x) = 1 := by simp only [castFin0ToField, mk_hom, Functor.id_obj, LinearEquiv.coe_coe] erw [PiTensorProduct.isEmptyEquiv_apply_tprod] /-! ## Evalutation of indices. -/ /-- The isomorphism of objects in `Rep S.k S.G` given an `i` in `Fin n.succ` allowing us to undertake evaluation. -/ def evalIso {n : ℕ} (c : Fin n.succ → S.C) (i : Fin n.succ) : S.F.obj (OverColor.mk c) ≅ (S.FD.obj (Discrete.mk (c i))) ⊗ (OverColor.lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)) := (S.F.mapIso (OverColor.equivToIso (HepLean.Fin.finExtractOne i))).trans <| (S.F.mapIso (OverColor.mkSum (c ∘ (HepLean.Fin.finExtractOne i).symm))).trans <| (Functor.Monoidal.μIso S.F _ _).symm.trans <| tensorIso ((S.F.mapIso (OverColor.mkIso (by ext x; fin_cases x; rfl))).trans (OverColor.forgetLiftApp S.FD (c i))) (S.F.mapIso (OverColor.mkIso (by ext x; simp))) lemma evalIso_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) : (S.evalIso c i).hom.hom (PiTensorProduct.tprod S.k x) = x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k))) := by simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, F_def, evalIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom, Action.instMonoidalCategory_tensorHom_hom, Functor.id_obj, mk_hom, ModuleCat.coe_comp, Function.comp_apply] change (((lift.obj S.FD).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FD (c i)).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom) ((Functor.Monoidal.μIso (lift.obj S.FD).toFunctor (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom (((lift.obj S.FD).map (equivToIso (HepLean.Fin.finExtractOne i)).hom).hom ((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.map_tprod] change (((lift.obj S.FD).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FD (c i)).hom.hom ⊗ ((lift.obj S.FD).map (mkIso _).hom).hom) ((Functor.Monoidal.μIso (lift.obj S.FD).toFunctor (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom (((lift.obj S.FD).map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractOne i).symm)).hom).hom (((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.map_tprod] change ((TensorProduct.map (((lift.obj S.FD).map (mkIso _).hom).hom ≫ (forgetLiftApp S.FD (c i)).hom.hom) ((lift.obj S.FD).map (mkIso _).hom).hom)) ((Functor.Monoidal.μIso (lift.obj S.FD).toFunctor (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inl)) (OverColor.mk ((c ∘ ⇑(HepLean.Fin.finExtractOne i).symm) ∘ Sum.inr))).inv.hom ((((PiTensorProduct.tprod S.k) _)))) =_ rw [lift.μIso_inv_tprod] rw [TensorProduct.map_tmul] erw [lift.map_tprod] simp only [Nat.succ_eq_add_one, CategoryStruct.comp, Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, mk_hom, Sum.elim_inl, Function.comp_apply, instMonoidalCategoryStruct_tensorObj_left, mkSum_homToEquiv, Equiv.refl_symm, LinearMap.coe_comp, Sum.elim_inr] congr 1 · change (forgetLiftApp S.FD (c i)).hom.hom (((lift.obj S.FD).map (mkIso _).hom).hom ((PiTensorProduct.tprod S.k) _)) = _ rw [lift.map_tprod] rw [forgetLiftApp_hom_hom_apply_eq] apply congrArg funext i match i with | (0 : Fin 1) => simp only [mk_hom, Fin.isValue, Function.comp_apply, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] rfl · apply congrArg funext k simp only [lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply] change (S.FD.map (eqToHom _)).hom (x ((HepLean.Fin.finExtractOne i).symm ((Sum.inr k)))) = _ have h1' {a b : Fin n.succ} (h : a = b) : (S.FD.map (eqToHom (by rw [h]))).hom (x a) = x b := by subst h simp refine h1' ?_ exact HepLean.Fin.finExtractOne_symm_inr_apply i k /-- The linear map giving the coordinate of a vector with respect to the given basis. Important Note: This is not a morphism in the category of representations. In general, it cannot be lifted thereto. -/ def evalLinearMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) : S.FD.obj { as := c i } →ₗ[S.k] S.k where toFun := fun v => (S.basis (c i)).repr v e map_add' := by simp map_smul' := by simp /-- The evaluation map, used to evaluate indices of tensors. Important Note: The evaluation map is in general, not equivariant with respect to group actions. It is a morphism in the underlying module category, not the category of representations. -/ def evalMap {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) : (S.F.obj (OverColor.mk c)).V ⟶ (S.F.obj (OverColor.mk (c ∘ i.succAbove))).V := (S.evalIso c i).hom.hom ≫ (Functor.Monoidal.μIso (Action.forget _ _) _ _).inv ≫ ModuleCat.asHom (TensorProduct.map (S.evalLinearMap i e) LinearMap.id) ≫ ModuleCat.asHom (TensorProduct.lid S.k _).toLinearMap lemma evalMap_tprod {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : Fin (S.repDim (c i))) (x : (i : Fin n.succ) → S.FD.obj (Discrete.mk (c i))) : (S.evalMap i e) (PiTensorProduct.tprod S.k x) = (((S.basis (c i)).repr (x i) e) : S.k) • (PiTensorProduct.tprod S.k (fun k => x (i.succAbove k)) : S.F.obj (OverColor.mk (c ∘ i.succAbove))) := by rw [evalMap] simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.forget_obj, Functor.Monoidal.μIso_inv, Functor.CoreMonoidal.toMonoidal_toOplaxMonoidal, Action.forget_δ, mk_left, Functor.id_obj, mk_hom, Function.comp_apply, Category.id_comp, ModuleCat.coe_comp] erw [evalIso_tprod] change ((TensorProduct.lid S.k ↑((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove))).V)) (((TensorProduct.map (S.evalLinearMap i e) LinearMap.id)) ((Functor.Monoidal.μIso (Action.forget (ModuleCat S.k) (MonCat.of S.G)) (S.FD.obj { as := c i }) ((lift.obj S.FD).obj (OverColor.mk (c ∘ i.succAbove)))).inv (x i ⊗ₜ[S.k] (PiTensorProduct.tprod S.k) fun k => x (i.succAbove k)))) = _ simp only [Nat.succ_eq_add_one, Action.forget_obj, Action.instMonoidalCategory_tensorObj_V, Functor.Monoidal.μIso_inv, Functor.CoreMonoidal.toMonoidal_toOplaxMonoidal, Action.forget_δ, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_left, Functor.id_obj, mk_hom, Function.comp_apply, ModuleCat.id_apply, TensorProduct.map_tmul, LinearMap.id_coe, id_eq, TensorProduct.lid_tmul] rfl /-! ## The equivalence turning vecs into tensors -/ /-- The equivaelcne between tensors based on `![c]` and vectros in ` S.FD.obj (Discrete.mk c)`. -/ def tensorToVec (c : S.C) : S.F.obj (OverColor.mk ![c]) ≅ S.FD.obj (Discrete.mk c) := OverColor.forgetLiftAppCon S.FD c lemma tensorToVec_inv_apply_expand (c : S.C) (x : S.FD.obj (Discrete.mk c)) : (S.tensorToVec c).inv.hom x = ((lift.obj S.FD).map (OverColor.mkIso (by funext i fin_cases i rfl)).hom).hom ((OverColor.forgetLiftApp S.FD c).inv.hom x) := forgetLiftAppCon_inv_apply_expand S.FD c x lemma tensorToVec_naturality_eqToHom (c c1 : S.C) (h : c = c1) : (S.tensorToVec c).hom ≫ S.FD.map (Discrete.eqToHom h) = S.F.map (OverColor.mkIso (by rw [h])).hom ≫ (S.tensorToVec c1).hom := OverColor.forgetLiftAppCon_naturality_eqToHom S.FD c c1 h lemma tensorToVec_naturality_eqToHom_apply (c c1 : S.C) (h : c = c1) (x : S.F.obj (OverColor.mk ![c])) : (S.FD.map (Discrete.eqToHom h)).hom ((S.tensorToVec c).hom.hom x) = (S.tensorToVec c1).hom.hom (((S.F.map (OverColor.mkIso (by rw [h])).hom).hom x)) := forgetLiftAppCon_naturality_eqToHom_apply S.FD c c1 h x end TensorSpecies end