/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.TensorSpecies.MetricTensor import HepLean.Tensors.Tree.NodeIdentities.Assoc /-! # Isomorphism between rep of color `c` and rep of dual color. -/ open IndexNotation open CategoryTheory open MonoidalCategory noncomputable section namespace TensorSpecies open TensorTree variable (S : TensorSpecies) /-- The morphism from `S.FD.obj (Discrete.mk c)` to `S.FD.obj (Discrete.mk (S.τ c))` defined by contracting with the metric. -/ def toDualRep (c : S.C) : S.FD.obj (Discrete.mk c) ⟶ S.FD.obj (Discrete.mk (S.τ c)) := (ρ_ (S.FD.obj (Discrete.mk c))).inv ≫ (S.FD.obj { as := c } ◁ (S.metric.app (Discrete.mk (S.τ c)))) ≫ (α_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv ≫ (S.contr.app (Discrete.mk c) ▷ S.FD.obj { as := S.τ c }) ≫ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom /-- The `toDualRep` for equal colors is the same, up-to conjugation by a trivial equivalence. -/ lemma toDualRep_congr {c c' : S.C} (h : c = c') : S.toDualRep c = S.FD.map (Discrete.eqToHom h) ≫ S.toDualRep c' ≫ S.FD.map (Discrete.eqToHom (congrArg S.τ h.symm)) := by subst h simp only [eqToHom_refl, Discrete.functor_map_id, Category.comp_id, Category.id_comp] /-- The morphism from `S.FD.obj (Discrete.mk (S.τ c))` to `S.FD.obj (Discrete.mk c)` defined by contracting with the metric. -/ def fromDualRep (c : S.C) : S.FD.obj (Discrete.mk (S.τ c)) ⟶ S.FD.obj (Discrete.mk c) := S.toDualRep (S.τ c) ≫ S.FD.map (Discrete.eqToHom (S.τ_involution c)) /-- The rewriting of `toDualRep` in terms of `contrOneTwoLeft`. -/ lemma toDualRep_apply_eq_contrOneTwoLeft (c : S.C) (x : S.FD.obj (Discrete.mk c)) : (S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom (contrOneTwoLeft (((S.tensorToVec c).inv.hom x)) (S.metricTensor (S.τ c))) := by simp only [toDualRep, Monoidal.tensorUnit_obj, Action.comp_hom, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V, Action.instMonoidalCategory_rightUnitor_inv_hom, Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_whiskerRight_hom, Action.instMonoidalCategory_leftUnitor_hom_hom, ModuleCat.coe_comp, Function.comp_apply, ModuleCat.MonoidalCategory.rightUnitor_inv_apply, ModuleCat.MonoidalCategory.whiskerLeft_apply, Nat.succ_eq_add_one, Nat.reduceAdd, contrOneTwoLeft, Functor.comp_obj, Discrete.functor_obj_eq_as, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, OverColor.Discrete.rep_iso_hom_inv_apply] repeat apply congrArg erw [pairIsoSep_inv_metricTensor] rfl /-- Expansion of `toDualRep` is `(S.tensorToVec c).inv.hom x | μ ⊗ S.metricTensor (S.τ c) | μ ν`. -/ lemma toDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) : let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x (S.toDualRep c).hom x = (S.tensorToVec (S.τ c)).hom.hom ({y | μ ⊗ S.metricTensor (S.τ c) | μ ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl))).tensor := by simp only rw [toDualRep_apply_eq_contrOneTwoLeft] apply congrArg exact contrOneTwoLeft_tensorTree ((S.tensorToVec c).inv.hom x) (S.metricTensor (S.τ c)) lemma fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) : let y : S.F.obj (OverColor.mk ![S.τ c]) := (S.tensorToVec (S.τ c)).inv.hom x (S.fromDualRep c).hom x = (S.tensorToVec c).hom.hom ({y | μ ⊗ S.metricTensor (S.τ (S.τ c))| μ ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; exact (S.τ_involution c).symm))).tensor := by simp only rw [fromDualRep] simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero] rw [toDualRep_tensorTree] rw [tensorToVec_naturality_eqToHom_apply] apply congrArg conv_lhs => rw [← perm_tensor] rw [perm_perm] exact perm_congr rfl rfl /-- Applying `toDualRep` followed by `fromDualRep` is equivalent to contracting with two metric tensors on the right. -/ lemma toDualRep_fromDualRep_tensorTree_metrics (c : S.C) (x : S.FD.obj (Discrete.mk c)) : let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x (S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom ({y | μ ⊗ S.metricTensor (S.τ c) | μ ν ⊗ S.metricTensor (S.τ (S.τ c)) | ν σ}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; exact (S.τ_involution c).symm))).tensor := by rw [toDualRep_tensorTree, fromDualRep_tensorTree] simp only apply congrArg rw [OverColor.Discrete.rep_iso_inv_hom_apply] conv_lhs => rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_fst <| tensorNode_of_tree _] rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_left _ _ _ _] rw [perm_tensor_eq <| perm_contr_congr 0 0 (by simp) (by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero, Fin.succ_zero_eq_one, Fin.succ_one_eq_two, OverColor.extractOne_homToEquiv, permProdLeft_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.sumCongr_refl, Equiv.refl_trans, Equiv.symm_trans_self, Equiv.refl_apply, HepLean.Fin.finExtractOnePerm_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove] decide)] rw [perm_perm] apply perm_congr _ rfl apply OverColor.Hom.fin_ext intro i fin_cases i simp only [OverColor.mk_left, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, Functor.id_obj, OverColor.mk_hom, Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero, Fin.succ_zero_eq_one, Fin.succ_one_eq_two, OverColor.extractOne_homToEquiv, HepLean.Fin.finExtractOnePerm_symm_apply, Category.assoc, OverColor.Hom.hom_comp, Over.comp_left, OverColor.equivToHomEq_hom_left, Equiv.toFun_as_coe, types_comp_apply, OverColor.mkIso_hom_hom_left_apply, OverColor.extractTwo_hom_left_apply, permProdLeft_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.sumCongr_refl, Equiv.refl_trans, Equiv.symm_trans_self, Equiv.refl_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove, HepLean.Fin.finExtractOnePerm_apply] decide /-- Applying `toDualRep` followed by `fromDualRep` is equivalent to contracting with a unit tensors on the right. -/ lemma toDualRep_fromDualRep_tensorTree_unitTensor (c : S.C) (x : S.FD.obj (Discrete.mk c)) : let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x (S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom ({y | μ ⊗ S.unitTensor c | μ ν}ᵀ |> perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl))).tensor := by rw [toDualRep_fromDualRep_tensorTree_metrics] apply congrArg conv_lhs => rw [perm_tensor_eq <| assoc_one_two_two _ _ _] rw [perm_perm] rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| metricTensor_contr_dual_metricTensor_eq_unit _] rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _] rw [perm_tensor_eq <| perm_contr_congr 0 1 (by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl] rfl) (by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, OverColor.extractOne_homToEquiv, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl, HepLean.Fin.finExtractOnePerm_symm_apply, Equiv.trans_apply, Equiv.symm_apply_apply, Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id, id_eq, Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove, Fin.succ_zero_eq_one] rfl)] rw [perm_perm] conv_rhs => rw [perm_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| unitTensor_eq_dual_perm _] rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _] rw [perm_tensor_eq <| perm_contr_congr 0 1 (by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl] rfl) (by simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, OverColor.mk_left, Functor.id_obj, OverColor.mk_hom, Function.comp_apply, HepLean.Fin.finMapToEquiv_symm_apply, Matrix.cons_val_zero, OverColor.extractOne_homToEquiv, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.coe_refl, HepLean.Fin.finExtractOnePerm_symm_apply, Equiv.trans_apply, Equiv.symm_apply_apply, Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id, id_eq, Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove, Fin.succ_zero_eq_one] rfl)] rw [perm_perm] refine perm_congr (OverColor.Hom.fin_ext _ _ fun i => ?_) rfl fin_cases i simp only [OverColor.mk_left, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, OverColor.mk_hom, Fin.isValue, Fin.succAbove_zero, OverColor.extractOne_homToEquiv, HepLean.Fin.finExtractOnePerm_symm_apply, Category.assoc, OverColor.Hom.hom_comp, Fin.zero_eta, Over.comp_left, OverColor.equivToHomEq_hom_left, Equiv.toFun_as_coe, Equiv.coe_refl, types_comp_apply, OverColor.mkIso_hom_hom_left_apply, OverColor.extractTwo_hom_left_apply, permProdRight_toEquiv, OverColor.equivToHomEq_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm, Equiv.sumCongr_symm, Equiv.refl_symm, Equiv.sumCongr_apply, Equiv.trans_apply, Equiv.symm_apply_apply, Sum.map_map, CompTriple.comp_eq, Equiv.self_comp_symm, Sum.map_id_id, id_eq, Equiv.apply_symm_apply, HepLean.Fin.finExtractOne_symm_inr_apply, Fin.zero_succAbove, Fin.succ_zero_eq_one, HepLean.Fin.finExtractOnePerm_apply, Function.comp_apply, HepLean.Fin.finMapToEquiv_symm_apply, Matrix.cons_val_zero] lemma toDualRep_fromDualRep_tensorTree (c : S.C) (x : S.FD.obj (Discrete.mk c)) : let y : S.F.obj (OverColor.mk ![c]) := (S.tensorToVec c).inv.hom x (S.fromDualRep c).hom ((S.toDualRep c).hom x) = (S.tensorToVec c).hom.hom ({y | μ}ᵀ).tensor := by rw [toDualRep_fromDualRep_tensorTree_unitTensor] apply congrArg conv_lhs => rw [perm_tensor_eq <| vec_contr_unitTensor_eq_self _] rw [perm_perm] rw [perm_eq_id] lemma toDualRep_fromDualRep_eq_self (c : S.C) (x : S.FD.obj (Discrete.mk c)) : (S.fromDualRep c).hom ((S.toDualRep c).hom x) = x := by rw [toDualRep_fromDualRep_tensorTree] simp only [Nat.succ_eq_add_one, Nat.reduceAdd, tensorNode_tensor, OverColor.Discrete.rep_iso_hom_inv_apply] lemma fromDualRep_toDualRep_eq_self (c : S.C) (x : S.FD.obj (Discrete.mk (S.τ c))) : (S.toDualRep c).hom ((S.fromDualRep c).hom x) = x := by rw [S.toDualRep_congr (S.τ_involution c).symm, fromDualRep] simp only [Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply] change (S.FD.map (Discrete.eqToHom _)).hom ((S.toDualRep (S.τ (S.τ c))).hom (((S.FD.map (Discrete.eqToHom _)) ≫ S.FD.map (Discrete.eqToHom _)).hom (((S.toDualRep (S.τ c)).hom x)))) = _ rw [← S.FD.map_comp] simp only [eqToHom_trans, eqToHom_refl, Discrete.functor_map_id, Action.id_hom, ModuleCat.id_apply] conv_rhs => rw [← S.toDualRep_fromDualRep_eq_self (S.τ c) x] rfl /-- The isomorphism between the representation associated with a color, and that associated with its dual. -/ def dualRepIsoDiscrete (c : S.C) : S.FD.obj (Discrete.mk c) ≅ S.FD.obj (Discrete.mk (S.τ c)) where hom := S.toDualRep c inv := S.fromDualRep c hom_inv_id := by ext x exact S.toDualRep_fromDualRep_eq_self c x inv_hom_id := by ext x exact S.fromDualRep_toDualRep_eq_self c x informal_definition dualRepIso where math :≈ "Given a `i : Fin n` the isomorphism between `S.F.obj (OverColor.mk c)` and `S.F.obj (OverColor.mk (Function.update c i (S.τ (c i))))` induced by `dualRepIsoDiscrete` acting on the `i`-th component of the color." deps :≈ [``dualRepIsoDiscrete] informal_lemma dualRepIso_unitTensor_fst where math :≈ "Acting with `dualRepIso` on the fst component of a `unitTensor` returns a metric." deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor] informal_lemma dualRepIso_unitTensor_snd where math :≈ "Acting with `dualRepIso` on the snd component of a `unitTensor` returns a metric." deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor] informal_lemma dualRepIso_metricTensor_fst where math :≈ "Acting with `dualRepIso` on the fst component of a `metricTensor` returns a unitTensor." deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor] informal_lemma dualRepIso_metricTensor_snd where math :≈ "Acting with `dualRepIso` on the snd component of a `metricTensor` returns a unitTensor." deps :≈ [``dualRepIso, ``unitTensor, ``metricTensor] end TensorSpecies end