/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import HepLean.Tensors.Tree.NodeIdentities.Congr import HepLean.Tensors.Tree.NodeIdentities.Basic /-! # The commutativity of Permutations and contractions. There is very likely a better way to do this using `TensorSpecies.contrMap_tprod`. -/ open IndexNotation open CategoryTheory open MonoidalCategory open OverColor open HepLean.Fin namespace TensorSpecies noncomputable section variable (S : TensorSpecies) lemma contrFin1Fin1_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ)).hom ≫ (S.contrFin1Fin1 c1 i j h).hom.hom = (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom.hom ≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))).hom := by have h1 : (S.F.map (extractTwoAux' i j σ)) ≫ (S.contrFin1Fin1 c1 i j h).hom = (S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom ≫ ((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) := by erw [← CategoryTheory.Iso.eq_comp_inv] rw [CategoryTheory.Category.assoc] erw [← CategoryTheory.Iso.inv_comp_eq] ext1 apply TensorProduct.ext' intro x y simp only [Nat.succ_eq_add_one, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, CategoryStruct.comp, extractOne_homToEquiv, Action.Hom.comp_hom, LinearMap.coe_comp] trans (S.F.map (extractTwoAux' i j σ)).hom (PiTensorProduct.tprod S.k (fun k => match k with | Sum.inl 0 => x | Sum.inr 0 => (S.FD.map (eqToHom (by simp only [Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply, extractOne_homToEquiv, Fin.isValue, mk_hom, finExtractTwo_symm_inl_inr_apply, Discrete.mk.injEq] erw [perm_contr_cond S h σ]))).hom y)) · apply congrArg have h1' {α :Type} {a b c d : α} (hab : a= b) (hcd : c = d) (h : a = d) : b = c := by rw [← hab, hcd] exact h have h1 := S.contrFin1Fin1_inv_tmul c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ) x y refine h1' ?_ ?_ h1 congr apply congrArg funext x match x with | Sum.inl 0 => rfl | Sum.inr 0 => rfl change _ = (S.contrFin1Fin1 c1 i j h).inv.hom ((S.FD.map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i))).hom x ⊗ₜ[S.k] (S.FD.map (Discrete.eqToHom (congrArg S.τ (Hom.toEquiv_comp_inv_apply σ i)))).hom y) rw [contrFin1Fin1_inv_tmul] change ((lift.obj S.FD).map (extractTwoAux' i j σ)).hom _ = _ rw [lift.map_tprod] apply congrArg funext i match i with | Sum.inl 0 => rfl | Sum.inr 0 => simp only [Nat.succ_eq_add_one, mk_hom, Fin.isValue, Function.comp_apply, extractOne_homToEquiv, lift.discreteFunctorMapEqIso, Functor.mapIso_hom, eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, Functor.id_obj, Discrete.functor_obj_eq_as, LinearEquiv.ofLinear_apply] change ((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y = ((S.FD.map (eqToHom _)) ≫ S.FD.map (eqToHom _)).hom y rw [← Functor.map_comp, ← Functor.map_comp] simp only [Fin.isValue, Nat.succ_eq_add_one, Discrete.functor_obj_eq_as, Function.comp_apply, eqToHom_trans] exact congrArg (λ f => Action.Hom.hom f) h1 lemma contrIso_comm_aux_1 {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : ((S.F.map σ).hom ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom).hom = (S.F.map (equivToIso (HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map (mkSum (c ∘ ⇑(HepLean.Fin.finExtractTwo ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j)).symm)).hom).hom ≫ (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom := by ext X change ((S.F.map σ) ≫ (S.F.map (equivToIso (HepLean.Fin.finExtractTwo i j)).hom) ≫ (S.F.map (mkSum (c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm)).hom)).hom X = _ rw [← Functor.map_comp, ← Functor.map_comp] erw [extractTwo_finExtractTwo] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Functor.map_comp, Action.comp_hom, ModuleCat.coe_comp, Function.comp_apply] rfl lemma contrIso_comm_aux_2 {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom ≫ (Functor.Monoidal.μIso S.F (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv.hom = (Functor.Monoidal.μIso S.F _ _).inv.hom ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom := by have h1 : (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)) ≫ (Functor.Monoidal.μIso S.F (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inl)) (OverColor.mk ((c1 ∘ ⇑(HepLean.Fin.finExtractTwo i j).symm) ∘ Sum.inr))).inv = (Functor.Monoidal.μIso S.F _ _).inv ≫ (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)) := by erw [CategoryTheory.IsIso.comp_inv_eq, CategoryTheory.Category.assoc] erw [CategoryTheory.IsIso.eq_inv_comp] exact (Functor.LaxMonoidal.μ_natural S.F (extractTwoAux' i j σ) (extractTwoAux i j σ)).symm exact congrArg (λ f => Action.Hom.hom f) h1 lemma contrIso_comm_aux_3 {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : ((Action.functorCategoryEquivalence (ModuleCat S.k) (MonCat.of S.G)).symm.inverse.map (S.F.map (extractTwoAux i j σ))).app PUnit.unit ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom = (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom ≫ (S.F.map (extractTwo i j σ)).hom := by change (S.F.map (extractTwoAux i j σ)).hom ≫ _ = _ have h1 : (S.F.map (extractTwoAux i j σ)) ≫ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom) = (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom) ≫ (S.F.map (extractTwo i j σ)) := by rw [← Functor.map_comp, ← Functor.map_comp] rfl exact congrArg (λ f => Action.Hom.hom f) h1 /-- A helper function used to proof the relation between perm and contr. -/ def contrIsoComm {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) := (((Discrete.pairτ S.FD S.τ).map (Discrete.eqToHom (Hom.toEquiv_comp_inv_apply σ i) : (Discrete.mk (c ((Hom.toEquiv σ).symm i))) ⟶ (Discrete.mk (c1 i)))) ⊗ (S.F.map (extractTwo i j σ))) lemma contrIso_comm_aux_5 {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map (extractTwoAux' i j σ) ⊗ S.F.map (extractTwoAux i j σ)).hom ≫ ((S.contrFin1Fin1 c1 i j h).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c1 i j)).hom).hom) = ((S.contrFin1Fin1 c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j) (perm_contr_cond S h σ)).hom.hom ⊗ (S.F.map (mkIso (contrIso.proof_1 S c ((Hom.toEquiv σ).symm i) ((HepLean.Fin.finExtractOnePerm ((Hom.toEquiv σ).symm i) (Hom.toEquiv σ)).symm j))).hom).hom) ≫ (S.contrIsoComm σ).hom := by erw [← CategoryTheory.MonoidalCategory.tensor_comp (f₁ := (S.F.map (extractTwoAux' i j σ)).hom)] rw [contrIso_comm_aux_3 S σ] rw [contrFin1Fin1_naturality S h σ] simp [contrIsoComm] lemma contrIso_comm_map {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map σ) ≫ (S.contrIso c1 i j h).hom = (S.contrIso c ((OverColor.Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)).hom ≫ contrIsoComm S σ := by ext1 simp only [Nat.succ_eq_add_one, Action.instMonoidalCategory_tensorObj_V, Action.comp_hom, extractOne_homToEquiv, Action.instMonoidalCategory_tensorHom_hom] rw [contrIso_hom_hom] rw [← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc, ← CategoryTheory.Category.assoc] rw [contrIso_comm_aux_1 S σ] rw [CategoryTheory.Category.assoc, CategoryTheory.Category.assoc, CategoryTheory.Category.assoc] rw [← CategoryTheory.Category.assoc (S.F.map (extractTwoAux' i j σ ⊗ extractTwoAux i j σ)).hom] rw [contrIso_comm_aux_2 S σ] simp only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj, contrIso, Iso.trans_hom, Functor.mapIso_hom, Iso.symm_hom, tensorIso_hom, Action.comp_hom, Category.assoc] apply congrArg apply congrArg apply congrArg simpa only [Nat.succ_eq_add_one, extractOne_homToEquiv, Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorHom_hom, Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj] using contrIso_comm_aux_5 S h σ /-- Contraction commutes with `S.F.map σ` on removing corresponding indices from `σ`. -/ lemma contrMap_naturality {n : ℕ} {c c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (S.F.map σ) ≫ (S.contrMap c1 i j h) = (S.contrMap c ((OverColor.Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ)) ≫ (S.F.map (extractTwo i j σ)) := by change (S.F.map σ) ≫ ((S.contrIso c1 i j h).hom ≫ (tensorHom (S.contr.app (Discrete.mk (c1 i))) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) = ((S.contrIso _ _ _ _).hom ≫ (tensorHom (S.contr.app (Discrete.mk _)) (𝟙 _)) ≫ (MonoidalCategory.leftUnitor _).hom) ≫ _ rw [← CategoryTheory.Category.assoc] rw [contrIso_comm_map S σ] repeat rw [CategoryTheory.Category.assoc] rw [← CategoryTheory.Category.assoc (S.contrIsoComm σ)] apply congrArg rw [← leftUnitor_naturality] repeat rw [← CategoryTheory.Category.assoc] apply congrFun apply congrArg rw [contrIsoComm] rw [← tensor_comp] have h1 : 𝟙_ (Rep S.k S.G) ◁ S.F.map (extractTwo i j σ) = 𝟙 _ ⊗ S.F.map (extractTwo i j σ) := by rfl rw [h1, ← tensor_comp] erw [CategoryTheory.Category.id_comp, CategoryTheory.Category.comp_id] erw [CategoryTheory.Category.comp_id] rw [S.contr.naturality] rfl end end TensorSpecies namespace TensorTree variable {S : TensorSpecies} /-- Permuting indices, and then contracting is equivalent to contracting and then permuting, once care is taking about ensuring one is contracting the same idices. -/ lemma perm_contr {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} (t : TensorTree S c) (σ : (OverColor.mk c) ⟶ (OverColor.mk c1)) : (contr i j h (perm σ t)).tensor = (perm (extractTwo i j σ) (contr ((Hom.toEquiv σ).symm i) (((Hom.toEquiv (extractOne i σ))).symm j) (S.perm_contr_cond h σ) t)).tensor := by rw [contr_tensor, perm_tensor, perm_tensor] change ((S.F.map σ) ≫ S.contrMap c1 i j h).hom t.tensor = _ rw [S.contrMap_naturality σ] rfl lemma perm_contr_congr_mkIso_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {i' : Fin n.succ.succ} {j' : Fin n.succ} (hi : i' = ((Hom.toEquiv σ).symm i)) (hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j)) : c ∘ i'.succAbove ∘ j'.succAbove = c ∘ Fin.succAbove ((Hom.toEquiv σ).symm i) ∘ Fin.succAbove ((Hom.toEquiv (extractOne i σ)).symm j) := by rw [hi, hj] lemma perm_contr_congr_contr_cond {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} (h : c1 (i.succAbove j) = S.τ (c1 i)) {σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} {i' : Fin n.succ.succ} {j' : Fin n.succ} (hi : i' = ((Hom.toEquiv σ).symm i)) (hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j)) : c (i'.succAbove j') = S.τ (c i') := by rw [hi, hj] exact S.perm_contr_cond h σ lemma perm_contr_congr {n : ℕ} {c : Fin n.succ.succ → S.C} {c1 : Fin n.succ.succ → S.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c1 (i.succAbove j) = S.τ (c1 i)} {t : TensorTree S c} {σ : (OverColor.mk c) ⟶ (OverColor.mk c1)} (i' : Fin n.succ.succ) (j' : Fin n.succ) (hi : i' = ((Hom.toEquiv σ).symm i) := by decide) (hj : j' = (((Hom.toEquiv (extractOne i σ))).symm j) := by decide) : (contr i j h (perm σ t)).tensor = (perm ((mkIso (perm_contr_congr_mkIso_cond hi hj)).hom ≫ extractTwo i j σ) (contr i' j' (perm_contr_congr_contr_cond h hi hj) t)).tensor := by rw [perm_contr] rw [perm_tensor_eq <| contr_congr i' j' hi.symm hj.symm] rw [perm_perm] end TensorTree