/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.Logic.Function.CompTypeclasses import Mathlib.Data.Real.Basic import Mathlib.Data.Fintype.BigOperators import Mathlib.Logic.Equiv.Fin import Mathlib.Tactic.FinCases import Mathlib.Logic.Equiv.Fintype /-! # Real Lorentz Tensors In this file we define real Lorentz tensors. We implicitly follow the definition of a modular operad. This will relation should be made explicit in the future. ## References -- For modular operads see: [Raynor][raynor2021graphical] -/ /-! TODO: Do complex tensors, with Van der Waerden notation for fermions. -/ /-! TODO: Generalize to maps into Lorentz tensors. -/ /-- The possible `colors` of an index for a RealLorentzTensor. There are two possiblities, `up` and `down`. -/ inductive RealLorentzTensor.Colors where | up : RealLorentzTensor.Colors | down : RealLorentzTensor.Colors /-- The association of colors with indices. For up and down this is `Fin 1 ⊕ Fin d`. -/ def RealLorentzTensor.ColorsIndex (d : ℕ) (μ : RealLorentzTensor.Colors) : Type := match μ with | RealLorentzTensor.Colors.up => Fin 1 ⊕ Fin d | RealLorentzTensor.Colors.down => Fin 1 ⊕ Fin d instance (d : ℕ) (μ : RealLorentzTensor.Colors) : Fintype (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instFintypeSum (Fin 1) (Fin d) | RealLorentzTensor.Colors.down => instFintypeSum (Fin 1) (Fin d) instance (d : ℕ) (μ : RealLorentzTensor.Colors) : DecidableEq (RealLorentzTensor.ColorsIndex d μ) := match μ with | RealLorentzTensor.Colors.up => instDecidableEqSum | RealLorentzTensor.Colors.down => instDecidableEqSum /-- An `IndexValue` is a set of actual values an index can take. e.g. for a 3-tensor (0, 1, 2). -/ def RealLorentzTensor.IndexValue {X : Type} (d : ℕ) (c : X → RealLorentzTensor.Colors) : Type 0 := (x : X) → RealLorentzTensor.ColorsIndex d (c x) /-- A Lorentz Tensor defined by its coordinate map. -/ structure RealLorentzTensor (d : ℕ) (X : Type) where /-- The color associated to each index of the tensor. -/ color : X → RealLorentzTensor.Colors /-- The coordinate map for the tensor. -/ coord : RealLorentzTensor.IndexValue d color → ℝ namespace RealLorentzTensor open Matrix universe u1 variable {d : ℕ} {X Y Z : Type} (c : X → Colors) /-! ## Colors -/ /-- The involution acting on colors. -/ def τ : Colors → Colors | Colors.up => Colors.down | Colors.down => Colors.up /-- The map τ is an involution. -/ @[simp] lemma τ_involutive : Function.Involutive τ := by intro x cases x <;> rfl lemma color_eq_dual_symm {μ ν : Colors} (h : μ = τ ν) : ν = τ μ := (Function.Involutive.eq_iff τ_involutive).mp h.symm /-- The color associated with an element of `x ∈ X` for a tensor `T`. -/ def ch {X : Type} (x : X) (T : RealLorentzTensor d X) : Colors := T.color x /-- An equivalence of `ColorsIndex` types given an equality of colors. -/ def colorsIndexCast {d : ℕ} {μ₁ μ₂ : RealLorentzTensor.Colors} (h : μ₁ = μ₂) : ColorsIndex d μ₁ ≃ ColorsIndex d μ₂ := Equiv.cast (congrArg (ColorsIndex d) h) /-- An equivalence of `ColorsIndex` between that of a color and that of its dual. -/ def colorsIndexDualCastSelf {d : ℕ} {μ : RealLorentzTensor.Colors}: ColorsIndex d μ ≃ ColorsIndex d (τ μ) where toFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x invFun x := match μ with | RealLorentzTensor.Colors.up => x | RealLorentzTensor.Colors.down => x left_inv x := by cases μ <;> rfl right_inv x := by cases μ <;> rfl /-- An equivalence of `ColorsIndex` types given an equality of a color and the dual of a color. -/ def colorsIndexDualCast {μ ν : Colors} (h : μ = τ ν) : ColorsIndex d μ ≃ ColorsIndex d ν := (colorsIndexCast h).trans colorsIndexDualCastSelf.symm lemma colorsIndexDualCast_symm {μ ν : Colors} (h : μ = τ ν) : (colorsIndexDualCast h).symm = @colorsIndexDualCast d _ _ ((Function.Involutive.eq_iff τ_involutive).mp h.symm) := by match μ, ν with | Colors.up, Colors.down => rfl | Colors.down, Colors.up => rfl /-! ## Index values -/ instance [Fintype X] [DecidableEq X] : Fintype (IndexValue d c) := Pi.fintype instance [Fintype X] : DecidableEq (IndexValue d c) := Fintype.decidablePiFintype /-! ## Induced isomorphisms between IndexValue sets -/ /-- An isomorphism of the type of index values given an isomorphism of sets. -/ @[simps!] def indexValueIso (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors} (h : i = j ∘ f) : IndexValue d i ≃ IndexValue d j := (Equiv.piCongrRight (fun μ => colorsIndexCast (congrFun h μ))).trans $ Equiv.piCongrLeft (fun y => RealLorentzTensor.ColorsIndex d (j y)) f lemma indexValueIso_symm_apply' (d : ℕ) (f : X ≃ Y) {i : X → Colors} {j : Y → Colors} (h : i = j ∘ f) (y : IndexValue d j) (x : X) : (indexValueIso d f h).symm y x = (colorsIndexCast (congrFun h x)).symm (y (f x)) := by rfl @[simp] lemma indexValueIso_trans (d : ℕ) (f : X ≃ Y) (g : Y ≃ Z) {i : X → Colors} {j : Y → Colors} {k : Z → Colors} (h : i = j ∘ f) (h' : j = k ∘ g) : (indexValueIso d f h).trans (indexValueIso d g h') = indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl) := by have h1 : ((indexValueIso d f h).trans (indexValueIso d g h')).symm = (indexValueIso d (f.trans g) (by rw [h, h', Function.comp.assoc]; rfl)).symm := by subst h' h exact Equiv.coe_inj.mp rfl simpa only [Equiv.symm_symm] using congrArg (fun e => e.symm) h1 lemma indexValueIso_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) : (indexValueIso d f h).symm = indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h))) := by ext i : 1 rw [← Equiv.symm_apply_eq] funext y rw [indexValueIso_symm_apply', indexValueIso_symm_apply'] simp only [Function.comp_apply, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast] apply cast_eq_iff_heq.mpr rw [Equiv.apply_symm_apply] lemma indexValueIso_eq_symm (d : ℕ) (f : X ≃ Y) (h : i = j ∘ f) : indexValueIso d f h = (indexValueIso d f.symm ((Equiv.eq_comp_symm f j i).mpr (id (Eq.symm h)))).symm := by rw [indexValueIso_symm] rfl @[simp] lemma indexValueIso_refl (d : ℕ) (i : X → Colors) : indexValueIso d (Equiv.refl X) (rfl : i = i) = Equiv.refl _ := by rfl /-! ## Dual isomorphism for index values -/ /-- The isomorphism between the index values of a color map and its dual. -/ @[simps!] def indexValueDualIso (d : ℕ) {i j : X → Colors} (h : i = τ ∘ j) : IndexValue d i ≃ IndexValue d j := (Equiv.piCongrRight (fun μ => colorsIndexDualCast (congrFun h μ))) /-! ## Extensionality -/ lemma ext {T₁ T₂ : RealLorentzTensor d X} (h : T₁.color = T₂.color) (h' : T₁.coord = fun i => T₂.coord (indexValueIso d (Equiv.refl X) h i)) : T₁ = T₂ := by cases T₁ cases T₂ simp_all only [IndexValue, mk.injEq] apply And.intro h simp only at h subst h simp only [Equiv.cast_refl, Equiv.coe_refl, CompTriple.comp_eq] at h' rfl /-! ## Mapping isomorphisms. -/ /-- An equivalence of Tensors given an equivalence of underlying sets. -/ @[simps!] def mapIso (d : ℕ) (f : X ≃ Y) : RealLorentzTensor d X ≃ RealLorentzTensor d Y where toFun T := { color := T.color ∘ f.symm, coord := T.coord ∘ (indexValueIso d f (by simp : T.color = T.color ∘ f.symm ∘ f)).symm} invFun T := { color := T.color ∘ f, coord := T.coord ∘ (indexValueIso d f.symm (by simp : T.color = T.color ∘ f ∘ f.symm)).symm} left_inv T := by refine ext ?_ ?_ · simp [Function.comp.assoc] · funext i simp only [IndexValue, Function.comp_apply, Function.comp_id] apply congrArg funext x erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm, indexValueIso_symm_apply'] rw [← Equiv.apply_eq_iff_eq_symm_apply] simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply] apply cast_eq_iff_heq.mpr congr exact Equiv.symm_apply_apply f x right_inv T := by refine ext ?_ ?_ · simp [Function.comp.assoc] · funext i simp only [IndexValue, Function.comp_apply, Function.comp_id] apply congrArg funext x erw [indexValueIso_symm_apply', indexValueIso_symm_apply', indexValueIso_eq_symm, indexValueIso_symm_apply'] rw [← Equiv.apply_eq_iff_eq_symm_apply] simp only [Equiv.refl_symm, Equiv.coe_refl, Function.comp_apply, id_eq, colorsIndexCast, Equiv.cast_symm, Equiv.cast_apply, cast_cast, Equiv.refl_apply] apply cast_eq_iff_heq.mpr congr exact Equiv.apply_symm_apply f x @[simp] lemma mapIso_trans (f : X ≃ Y) (g : Y ≃ Z) : (mapIso d f).trans (mapIso d g) = mapIso d (f.trans g) := by refine Equiv.coe_inj.mp ?_ funext T refine ext rfl ?_ simp only [Equiv.trans_apply, IndexValue, mapIso_apply_color, Equiv.symm_trans_apply, indexValueIso_refl, Equiv.refl_apply, mapIso_apply_coord] funext i rw [mapIso_apply_coord, mapIso_apply_coord] apply congrArg rw [← indexValueIso_trans] rfl exact (Equiv.comp_symm_eq f (T.color ∘ ⇑f.symm) T.color).mp rfl lemma mapIso_symm (f : X ≃ Y) : (mapIso d f).symm = mapIso d f.symm := rfl lemma mapIso_refl : mapIso d (Equiv.refl X) = Equiv.refl _ := rfl /-! ## Sums -/ /-- An equivalence that splits elements of `IndexValue d (Sum.elim TX TY)` into two components. -/ def indexValueSumEquiv {X Y : Type} {TX : X → Colors} {TY : Y → Colors} : IndexValue d (Sum.elim TX TY) ≃ IndexValue d TX × IndexValue d TY where toFun i := (fun x => i (Sum.inl x), fun x => i (Sum.inr x)) invFun p := fun c => match c with | Sum.inl x => (p.1 x) | Sum.inr x => (p.2 x) left_inv i := by simp only [IndexValue] ext1 x cases x with | inl val => rfl | inr val_1 => rfl right_inv p := rfl /-- An equivalence between index values formed by commuting sums. -/ def indexValueSumComm {X Y : Type} (Tc : X → Colors) (Sc : Y → Colors) : IndexValue d (Sum.elim Tc Sc) ≃ IndexValue d (Sum.elim Sc Tc) := indexValueIso d (Equiv.sumComm X Y) (by aesop) /-! ## Marked Lorentz tensors To define contraction and multiplication of Lorentz tensors we need to mark indices. -/ /-- A `RealLorentzTensor` with `n` marked indices. -/ def Marked (d : ℕ) (X : Type) (n : ℕ) : Type := RealLorentzTensor d (X ⊕ Fin n) namespace Marked variable {n m : ℕ} /-- The marked point. -/ def markedPoint (X : Type) (i : Fin n) : (X ⊕ Fin n) := Sum.inr i /-- The colors of unmarked indices. -/ def unmarkedColor (T : Marked d X n) : X → Colors := T.color ∘ Sum.inl /-- The colors of marked indices. -/ def markedColor (T : Marked d X n) : Fin n → Colors := T.color ∘ Sum.inr /-- The index values restricted to unmarked indices. -/ def UnmarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.unmarkedColor instance [Fintype X] [DecidableEq X] (T : Marked d X n) : Fintype T.UnmarkedIndexValue := Pi.fintype instance [Fintype X] (T : Marked d X n) : DecidableEq T.UnmarkedIndexValue := Fintype.decidablePiFintype /-- The index values restricted to marked indices. -/ def MarkedIndexValue (T : Marked d X n) : Type := IndexValue d T.markedColor instance (T : Marked d X n) : Fintype T.MarkedIndexValue := Pi.fintype instance (T : Marked d X n) : DecidableEq T.MarkedIndexValue := Fintype.decidablePiFintype lemma color_eq_elim (T : Marked d X n) : T.color = Sum.elim T.unmarkedColor T.markedColor := by ext1 x cases' x <;> rfl /-- An equivalence splitting elements of `IndexValue d T.color` into their two components. -/ def splitIndexValue {T : Marked d X n} : IndexValue d T.color ≃ T.UnmarkedIndexValue × T.MarkedIndexValue := (indexValueIso d (Equiv.refl _) T.color_eq_elim).trans indexValueSumEquiv @[simp] lemma splitIndexValue_sum {T : Marked d X n} [Fintype X] [DecidableEq X] (P : T.UnmarkedIndexValue × T.MarkedIndexValue → ℝ) : ∑ i, P (splitIndexValue i) = ∑ j, ∑ k, P (j, k) := by rw [Equiv.sum_comp splitIndexValue, Fintype.sum_prod_type] /-- Construction of marked index values for the case of 1 marked index. -/ def oneMarkedIndexValue {T : Marked d X 1} : ColorsIndex d (T.color (markedPoint X 0)) ≃ T.MarkedIndexValue where toFun x := fun i => match i with | 0 => x invFun i := i 0 left_inv x := rfl right_inv i := by funext x fin_cases x rfl /-- Construction of marked index values for the case of 2 marked index. -/ def twoMarkedIndexValue (T : Marked d X 2) (x : ColorsIndex d (T.color (markedPoint X 0))) (y : ColorsIndex d <| T.color <| markedPoint X 1) : T.MarkedIndexValue := fun i => match i with | 0 => x | 1 => y /-- An equivalence of types used to turn the first marked index into an unmarked index. -/ def unmarkFirstSet (X : Type) (n : ℕ) : (X ⊕ Fin n.succ) ≃ (X ⊕ Fin 1) ⊕ Fin n := trans (Equiv.sumCongr (Equiv.refl _) (((Fin.castOrderIso (Nat.succ_eq_one_add n)).toEquiv.trans finSumFinEquiv.symm))) (Equiv.sumAssoc _ _ _).symm /-- Unmark the first marked index of a marked tensor. -/ def unmarkFirst {X : Type} : Marked d X n.succ ≃ Marked d (X ⊕ Fin 1) n := mapIso d (unmarkFirstSet X n) /-! ## Marking elements. -/ section markingElements variable [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y] /-- Splits a type based on an embedding from `Fin n` into elements not in the image of the embedding, and elements in the image. -/ def markEmbeddingSet {n : ℕ} (f : Fin n ↪ X) : X ≃ {x // x ∈ (Finset.image f Finset.univ)ᶜ} ⊕ Fin n := (Equiv.Set.sumCompl (Set.range ⇑f)).symm.trans <| (Equiv.sumComm _ _).trans <| Equiv.sumCongr ((Equiv.subtypeEquivRight (by simp))) <| (Function.Embedding.toEquivRange f).symm lemma markEmbeddingSet_on_mem {n : ℕ} (f : Fin n ↪ X) (x : X) (hx : x ∈ Finset.image f Finset.univ) : markEmbeddingSet f x = Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩) := by rw [markEmbeddingSet] simp only [Equiv.trans_apply, Equiv.sumComm_apply, Equiv.sumCongr_apply] rw [Equiv.Set.sumCompl_symm_apply_of_mem] rfl lemma markEmbeddingSet_on_not_mem {n : ℕ} (f : Fin n ↪ X) (x : X) (hx : ¬ x ∈ (Finset.image f Finset.univ)) : markEmbeddingSet f x = Sum.inl ⟨x, by simpa using hx⟩ := by rw [markEmbeddingSet] simp only [Equiv.trans_apply, Equiv.sumComm_apply, Equiv.sumCongr_apply] rw [Equiv.Set.sumCompl_symm_apply_of_not_mem] rfl simpa using hx /-- Marks the indices of tensor in the image of an embedding. -/ @[simps!] def markEmbedding {n : ℕ} (f : Fin n ↪ X) : RealLorentzTensor d X ≃ Marked d {x // x ∈ (Finset.image f Finset.univ)ᶜ} n := mapIso d (markEmbeddingSet f) lemma markEmbeddingSet_on_mem_indexValue_apply {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color) (x : X) (hx : x ∈ (Finset.image f Finset.univ)) : i (markEmbeddingSet f x) = colorsIndexCast (congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_mem f x hx).symm) (i (Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩))) := by simp [colorsIndexCast] symm apply cast_eq_iff_heq.mpr rw [markEmbeddingSet_on_mem f x hx] lemma markEmbeddingSet_on_not_mem_indexValue_apply {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color) (x : X) (hx : ¬ x ∈ (Finset.image f Finset.univ)) : i (markEmbeddingSet f x) = colorsIndexCast (congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_not_mem f x hx).symm) (i (Sum.inl ⟨x, by simpa using hx⟩)) := by simp [colorsIndexCast] symm apply cast_eq_iff_heq.mpr rw [markEmbeddingSet_on_not_mem f x hx] /-- An equivalence between the IndexValues for a tensor `T` and the corresponding tensor with indices maked by an embedding. -/ @[simps!] def markEmbeddingIndexValue {n : ℕ} (f : Fin n ↪ X) (T : RealLorentzTensor d X) : IndexValue d T.color ≃ IndexValue d (markEmbedding f T).color := indexValueIso d (markEmbeddingSet f) ( (Equiv.comp_symm_eq (markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl) lemma markEmbeddingIndexValue_apply_symm_on_mem {n : ℕ} (f : Fin n.succ ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color) (x : X) (hx : x ∈ (Finset.image f Finset.univ)) : (markEmbeddingIndexValue f T).symm i x = (colorsIndexCast ((congrFun ((Equiv.comp_symm_eq (markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl) x).trans (congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_mem f x hx)))).symm (i (Sum.inr (f.toEquivRange.symm ⟨x, by simpa using hx⟩))) := by rw [markEmbeddingIndexValue, indexValueIso_symm_apply'] rw [markEmbeddingSet_on_mem_indexValue_apply f T i x hx] simp [colorsIndexCast] lemma markEmbeddingIndexValue_apply_symm_on_not_mem {n : ℕ} (f : Fin n.succ ↪ X) (T : RealLorentzTensor d X) (i : IndexValue d (markEmbedding f T).color) (x : X) (hx : ¬ x ∈ (Finset.image f Finset.univ)) : (markEmbeddingIndexValue f T).symm i x = (colorsIndexCast ((congrFun ((Equiv.comp_symm_eq (markEmbeddingSet f) ((markEmbedding f) T).color T.color).mp rfl) x).trans ((congrArg ((markEmbedding f) T).color (markEmbeddingSet_on_not_mem f x hx))))).symm (i (Sum.inl ⟨x, by simpa using hx⟩)) := by rw [markEmbeddingIndexValue, indexValueIso_symm_apply'] rw [markEmbeddingSet_on_not_mem_indexValue_apply f T i x hx] simp only [Nat.succ_eq_add_one, Function.comp_apply, markEmbedding_apply_color, colorsIndexCast, Equiv.cast_symm, id_eq, eq_mp_eq_cast, eq_mpr_eq_cast, Equiv.cast_apply, cast_cast, cast_eq, Equiv.cast_refl, Equiv.refl_symm] rfl /-- Given an equivalence of types, an embedding `f` to an embedding `g`, the equivalence taking the complement of the image of `f` to the complement of the image of `g`. -/ @[simps!] def equivEmbedCompl (e : X ≃ Y) {f : Fin n ↪ X} {g : Fin n ↪ Y} (he : f.trans e = g) : {x // x ∈ (Finset.image f Finset.univ)ᶜ} ≃ {y // y ∈ (Finset.image g Finset.univ)ᶜ} := (Equiv.subtypeEquivOfSubtype' e).trans <| (Equiv.subtypeEquivRight (fun x => by simp [← he, Equiv.eq_symm_apply])) lemma markEmbedding_mapIso_right (e : X ≃ Y) (f : Fin n ↪ X) (g : Fin n ↪ Y) (he : f.trans e = g) (T : RealLorentzTensor d X) : markEmbedding g (mapIso d e T) = mapIso d (Equiv.sumCongr (equivEmbedCompl e he) (Equiv.refl (Fin n))) (markEmbedding f T) := by rw [markEmbedding, markEmbedding] erw [← Equiv.trans_apply, ← Equiv.trans_apply] rw [mapIso_trans, mapIso_trans] apply congrFun repeat apply congrArg refine Equiv.ext (fun x => ?_) simp only [Equiv.trans_apply, Equiv.sumCongr_apply, Equiv.coe_refl] by_cases hx : x ∈ Finset.image f Finset.univ · rw [markEmbeddingSet_on_mem f x hx, markEmbeddingSet_on_mem g (e x) (by simpa [← he] using hx)] subst he simp only [Sum.map_inr, id_eq, Sum.inr.injEq, Equiv.symm_apply_eq, Function.Embedding.toEquivRange_apply, Function.Embedding.trans_apply, Equiv.coe_toEmbedding, Subtype.mk.injEq, EmbeddingLike.apply_eq_iff_eq] change x = f.toEquivRange _ rw [Equiv.apply_symm_apply] · rw [markEmbeddingSet_on_not_mem f x hx, markEmbeddingSet_on_not_mem g (e x) (by simpa [← he] using hx)] subst he rfl lemma markEmbedding_mapIso_left {n m : ℕ} (e : Fin n ≃ Fin m) (f : Fin n ↪ X) (g : Fin m ↪ X) (he : e.symm.toEmbedding.trans f = g) (T : RealLorentzTensor d X) : markEmbedding g T = mapIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simpa [← he] using Equiv.forall_congr_left e)) e) (markEmbedding f T) := by rw [markEmbedding, markEmbedding] erw [← Equiv.trans_apply] rw [mapIso_trans] apply congrFun repeat apply congrArg refine Equiv.ext (fun x => ?_) simp only [Equiv.trans_apply, Equiv.sumCongr_apply] by_cases hx : x ∈ Finset.image f Finset.univ · rw [markEmbeddingSet_on_mem f x hx, markEmbeddingSet_on_mem g x (by simp [← he, hx] obtain ⟨y, _, hy2⟩ := Finset.mem_image.mp hx use e y simpa using hy2)] subst he simp [Equiv.symm_apply_eq] change x = f.toEquivRange _ rw [Equiv.apply_symm_apply] · rw [markEmbeddingSet_on_not_mem f x hx, markEmbeddingSet_on_not_mem g x (by simpa [← he, hx] using fun x => not_exists.mp (Finset.mem_image.mpr.mt hx) (e.symm x))] subst he rfl /-! ## Marking a single element -/ /-- An embedding from `Fin 1` into `X` given an element `x ∈ X`. -/ @[simps!] def embedSingleton (x : X) : Fin 1 ↪ X := ⟨![x], fun x y => by fin_cases x; fin_cases y; simp⟩ lemma embedSingleton_toEquivRange_symm (x : X) : (embedSingleton x).toEquivRange.symm ⟨x, by simp⟩ = 0 := by exact Fin.fin_one_eq_zero _ /-- Equivalence, taking a tensor to a tensor with a single marked index. -/ @[simps!] def markSingle (x : X) : RealLorentzTensor d X ≃ Marked d {x' // x' ≠ x} 1 := (markEmbedding (embedSingleton x)).trans (mapIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simp)) (Equiv.refl _))) /-- Equivalence between index values of a tensor and the corresponding tensor with a single marked index. -/ @[simps!] def markSingleIndexValue (T : RealLorentzTensor d X) (x : X) : IndexValue d T.color ≃ IndexValue d (markSingle x T).color := (markEmbeddingIndexValue (embedSingleton x) T).trans <| indexValueIso d (Equiv.sumCongr (Equiv.subtypeEquivRight (fun x => by simp)) (Equiv.refl _)) (by funext x_1; simp) /-- Given an equivalence of types, taking `x` to `y` the corresponding equivalence of subtypes of elements not equal to `x` and not equal to `y` respectively. -/ @[simps!] def equivSingleCompl (e : X ≃ Y) {x : X} {y : Y} (he : e x = y) : {x' // x' ≠ x} ≃ {y' // y' ≠ y} := (Equiv.subtypeEquivOfSubtype' e).trans <| Equiv.subtypeEquivRight (fun a => by simp [Equiv.symm_apply_eq, he]) lemma markSingle_mapIso (e : X ≃ Y) (x : X) (y : Y) (he : e x = y) (T : RealLorentzTensor d X) : markSingle y (mapIso d e T) = mapIso d (Equiv.sumCongr (equivSingleCompl e he) (Equiv.refl _)) (markSingle x T) := by rw [markSingle, Equiv.trans_apply] rw [markEmbedding_mapIso_right e (embedSingleton x) (embedSingleton y) (Function.Embedding.ext_iff.mp (fun a => by simpa using he)), markSingle, markEmbedding] erw [← Equiv.trans_apply, ← Equiv.trans_apply, ← Equiv.trans_apply] rw [mapIso_trans, mapIso_trans, mapIso_trans, mapIso_trans] apply congrFun repeat apply congrArg refine Equiv.ext fun x => ?_ simp only [ne_eq, Fintype.univ_ofSubsingleton, Fin.zero_eta, Fin.isValue, Equiv.sumCongr_trans, Equiv.trans_refl, Equiv.trans_apply, Equiv.sumCongr_apply, Equiv.coe_trans, Equiv.coe_refl, Sum.map_map, CompTriple.comp_eq] subst he rfl /-! ## Marking two elements -/ /-- An embedding from `Fin 2` given two inequivalent elements. -/ @[simps!] def embedDoubleton (x y : X) (h : x ≠ y) : Fin 2 ↪ X := ⟨![x, y], fun a b => by fin_cases a <;> fin_cases b <;> simp [h] exact h.symm⟩ end markingElements end Marked /-! ## Contraction of indices -/ open Marked /-- The contraction of the marked indices in a tensor with two marked indices. -/ def contr {X : Type} (T : Marked d X 2) (h : T.markedColor 0 = τ (T.markedColor 1)) : RealLorentzTensor d X where color := T.unmarkedColor coord := fun i => ∑ x, T.coord (splitIndexValue.symm (i, T.twoMarkedIndexValue x $ colorsIndexDualCast h x)) /-! TODO: Following the ethos of modular operads, prove properties of contraction. -/ /-! TODO: Use `contr` to generalize to any pair of marked index. -/ /-! ## Rising and lowering indices Rising or lowering an index corresponds to changing the color of that index. -/ /-! TODO: Define the rising and lowering of indices using contraction with the metric. -/ /-! ## Graphical species and Lorentz tensors -/ /-! TODO: From Lorentz tensors graphical species. -/ /-! TODO: Show that the action of the Lorentz group defines an action on the graphical species. -/ end RealLorentzTensor