/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.Metric import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup /-! # Spacetime as a self-adjoint matrix There is a linear equivalence between the vector space of space-time points and the vector space of 2×2-complex self-adjoint matrices. In this file we define this linear equivalence in `toSelfAdjointMatrix`. -/ namespace SpaceTime open Matrix open MatrixGroups open Complex /-- A 2×2-complex matrix formed from a space-time point. -/ @[simp] def toMatrix (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ := !![x 0 + x 3, x 1 - x 2 * I; x 1 + x 2 * I, x 0 - x 3] /-- The matrix `x.toMatrix` for `x ∈ spaceTime` is self adjoint. -/ lemma toMatrix_isSelfAdjoint (x : SpaceTime) : IsSelfAdjoint x.toMatrix := by rw [isSelfAdjoint_iff, star_eq_conjTranspose, ← Matrix.ext_iff] intro i j fin_cases i <;> fin_cases j <;> simp [toMatrix, conj_ofReal] rfl /-- A self-adjoint matrix formed from a space-time point. -/ @[simps!] def toSelfAdjointMatrix' (x : SpaceTime) : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) := ⟨x.toMatrix, toMatrix_isSelfAdjoint x⟩ /-- A self-adjoint matrix formed from a space-time point. -/ @[simp] noncomputable def fromSelfAdjointMatrix' (x : selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ)) : SpaceTime := ![1/2 * (x.1 0 0 + x.1 1 1).re, (x.1 1 0).re, (x.1 1 0).im , (x.1 0 0 - x.1 1 1).re/2] /-- The linear equivalence between the vector-space `spaceTime` and self-adjoint 2×2-complex matrices. -/ noncomputable def toSelfAdjointMatrix : SpaceTime ≃ₗ[ℝ] selfAdjoint (Matrix (Fin 2) (Fin 2) ℂ) where toFun := toSelfAdjointMatrix' invFun := fromSelfAdjointMatrix' left_inv x := by simp only [fromSelfAdjointMatrix', one_div, toSelfAdjointMatrix'_coe, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_cons, head_fin_const, add_add_sub_cancel, add_re, ofReal_re, mul_re, I_re, mul_zero, ofReal_im, I_im, mul_one, sub_self, add_zero, add_im, mul_im, zero_add, add_sub_sub_cancel, half_add_self] field_simp [SpaceTime] ext1 x fin_cases x <;> rfl right_inv x := by simp only [toSelfAdjointMatrix', toMatrix, fromSelfAdjointMatrix', one_div, Fin.isValue, add_re, sub_re, cons_val_zero, ofReal_mul, ofReal_inv, ofReal_ofNat, ofReal_add, cons_val_three, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, head_cons, ofReal_div, ofReal_sub, cons_val_one, cons_val_two, re_add_im] ext i j fin_cases i <;> fin_cases j <;> field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal] exact conj_eq_iff_re.mp (congrArg (fun M => M 0 0) $ selfAdjoint.mem_iff.mp x.2 ) have h01 := congrArg (fun M => M 0 1) $ selfAdjoint.mem_iff.mp x.2 simp only [Fin.isValue, star_apply, RCLike.star_def] at h01 rw [← h01, RCLike.conj_eq_re_sub_im] rfl exact conj_eq_iff_re.mp (congrArg (fun M => M 1 1) $ selfAdjoint.mem_iff.mp x.2 ) map_add' x y := by ext i j : 2 simp only [toSelfAdjointMatrix'_coe, add_apply, ofReal_add, of_apply, cons_val', empty_val', cons_val_fin_one, AddSubmonoid.coe_add, AddSubgroup.coe_toAddSubmonoid, Matrix.add_apply] fin_cases i <;> fin_cases j <;> simp <;> ring map_smul' r x := by ext i j : 2 simp only [toSelfAdjointMatrix', toMatrix, Fin.isValue, smul_apply, ofReal_mul, RingHom.id_apply] fin_cases i <;> fin_cases j <;> field_simp [fromSelfAdjointMatrix', toMatrix, conj_ofReal, smul_apply] <;> ring lemma det_eq_ηLin (x : SpaceTime) : det (toSelfAdjointMatrix x).1 = ηLin x x := by simp [toSelfAdjointMatrix, ηLin_expand] ring_nf simp only [Fin.isValue, I_sq, mul_neg, mul_one] ring end SpaceTime