/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.FourVelocity import HepLean.SpaceTime.LorentzGroup.Proper /-! # The Orthochronous Lorentz Group We define the give a series of lemmas related to the orthochronous property of lorentz matrices. ## TODO - Prove topological properties. -/ noncomputable section namespace SpaceTime open Manifold open Matrix open Complex open ComplexConjugate namespace LorentzGroup open PreFourVelocity /-- The first column of a lorentz matrix as a `PreFourVelocity`. -/ @[simp] def fstCol (Λ : LorentzGroup) : PreFourVelocity := ⟨Λ.1 *ᵥ stdBasis 0, by rw [mem_PreFourVelocity_iff, ηLin_expand] simp only [Fin.isValue, stdBasis_mulVec] have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp Λ.2) 0) 0 simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one, not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero, zero_add, one_apply_eq] at h00 simp only [η_explicit, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00 exact h00⟩ /-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/ def IsOrthochronous (Λ : LorentzGroup) : Prop := 0 ≤ Λ.1 0 0 lemma IsOrthochronous_iff_transpose (Λ : LorentzGroup) : IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by rfl lemma IsOrthochronous_iff_fstCol_IsFourVelocity (Λ : LorentzGroup) : IsOrthochronous Λ ↔ IsFourVelocity (fstCol Λ) := by simp [IsOrthochronous, IsFourVelocity] rw [stdBasis_mulVec] /-- The continuous map taking a Lorentz transformation to its `0 0` element. -/ def mapZeroZeroComp : C(LorentzGroup, ℝ) := ⟨fun Λ => Λ.1 0 0, Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) 0 0⟩ /-- An auxillary function used in the definition of `orthchroMapReal`. -/ def stepFunction : ℝ → ℝ := fun t => if t ≤ -1 then -1 else if 1 ≤ t then 1 else t lemma stepFunction_continuous : Continuous stepFunction := by apply Continuous.if ?_ continuous_const (Continuous.if ?_ continuous_const continuous_id) <;> intro a ha rw [@Set.Iic_def, @frontier_Iic, @Set.mem_singleton_iff] at ha rw [ha] simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte] have h1 : ¬ (1 : ℝ) ≤ 0 := by simp exact Eq.symm (if_neg h1) rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha exact id (Eq.symm ha) /-- The continuous map from `lorentzGroup` to `ℝ` wh taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/ def orthchroMapReal : C(LorentzGroup, ℝ) := ContinuousMap.comp ⟨stepFunction, stepFunction_continuous⟩ mapZeroZeroComp lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) : orthchroMapReal Λ = 1 := by rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h simp only [IsFourVelocity] at h rw [zero_nonneg_iff] at h simp [stdBasis_mulVec] at h have h1 : ¬ Λ.1 0 0 ≤ (-1 : ℝ) := by linarith change stepFunction (Λ.1 0 0) = 1 rw [stepFunction, if_neg h1, if_pos h] lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) : orthchroMapReal Λ = - 1 := by rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h rw [not_IsFourVelocity_iff, zero_nonpos_iff] at h simp only [fstCol, Fin.isValue, stdBasis_mulVec] at h change stepFunction (Λ.1 0 0) = - 1 rw [stepFunction, if_pos h] lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup) : orthchroMapReal Λ = -1 ∨ orthchroMapReal Λ = 1 := by by_cases h : IsOrthochronous Λ apply Or.inr $ orthchroMapReal_on_IsOrthochronous h apply Or.inl $ orthchroMapReal_on_not_IsOrthochronous h local notation "ℤ₂" => Multiplicative (ZMod 2) /-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/ def orthchroMap : C(LorentzGroup, ℤ₂) := ContinuousMap.comp coeForℤ₂ { toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩, continuous_toFun := Continuous.subtype_mk (ContinuousMap.continuous orthchroMapReal) _} lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup} (h : IsOrthochronous Λ) : orthchroMap Λ = 1 := by simp [orthchroMap, orthchroMapReal_on_IsOrthochronous h] lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup} (h : ¬ IsOrthochronous Λ) : orthchroMap Λ = Additive.toMul (1 : ZMod 2) := by simp [orthchroMap, orthchroMapReal_on_not_IsOrthochronous h] rfl lemma zero_zero_mul (Λ Λ' : LorentzGroup) : (Λ * Λ').1 0 0 = (fstCol (transpose Λ)).1 0 * (fstCol Λ').1 0 + ⟪(fstCol (transpose Λ)).1.space, (fstCol Λ').1.space⟫_ℝ := by simp only [Fin.isValue, lorentzGroupIsGroup_mul_coe, mul_apply, Fin.sum_univ_four, fstCol, transpose, stdBasis_mulVec, transpose_apply, space, PiLp.inner_apply, Nat.succ_eq_add_one, Nat.reduceAdd, RCLike.inner_apply, conj_trivial, Fin.sum_univ_three, cons_val_zero, cons_val_one, head_cons, cons_val_two, tail_cons] ring lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ) (h' : IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h' rw [IsOrthochronous, zero_zero_mul] exact euclid_norm_IsFourVelocity_IsFourVelocity h h' lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ) (h' : ¬ IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h' rw [IsOrthochronous, zero_zero_mul] exact euclid_norm_not_IsFourVelocity_not_IsFourVelocity h h' lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup} (h : IsOrthochronous Λ) (h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h' rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff] simp [stdBasis_mulVec] change (Λ * Λ').1 0 0 ≤ _ rw [zero_zero_mul] exact euclid_norm_IsFourVelocity_not_IsFourVelocity h h' lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup} (h : ¬ IsOrthochronous Λ) (h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by rw [IsOrthochronous_iff_transpose] at h rw [IsOrthochronous_iff_fstCol_IsFourVelocity] at h h' rw [IsOrthochronous_iff_fstCol_IsFourVelocity, not_IsFourVelocity_iff] simp [stdBasis_mulVec] change (Λ * Λ').1 0 0 ≤ _ rw [zero_zero_mul] exact euclid_norm_not_IsFourVelocity_IsFourVelocity h h' /-- The homomorphism from `lorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/ def orthchroRep : LorentzGroup →* ℤ₂ where toFun := orthchroMap map_one' := orthchroMap_IsOrthochronous (by simp [IsOrthochronous]) map_mul' Λ Λ' := by simp only by_cases h : IsOrthochronous Λ <;> by_cases h' : IsOrthochronous Λ' rw [orthchroMap_IsOrthochronous h, orthchroMap_IsOrthochronous h', orthchroMap_IsOrthochronous (mul_othchron_of_othchron_othchron h h')] rfl rw [orthchroMap_IsOrthochronous h, orthchroMap_not_IsOrthochronous h', orthchroMap_not_IsOrthochronous (mul_not_othchron_of_othchron_not_othchron h h')] rfl rw [orthchroMap_not_IsOrthochronous h, orthchroMap_IsOrthochronous h', orthchroMap_not_IsOrthochronous (mul_not_othchron_of_not_othchron_othchron h h')] rfl rw [orthchroMap_not_IsOrthochronous h, orthchroMap_not_IsOrthochronous h', orthchroMap_IsOrthochronous (mul_othchron_of_not_othchron_not_othchron h h')] rfl end LorentzGroup end SpaceTime end