/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license. Authors: Joseph Tooby-Smith -/ import HepLean.SpaceTime.LorentzGroup.Basic import HepLean.GroupTheory.SO3.Basic import Mathlib.Topology.Constructions /-! # Rotations -/ noncomputable section namespace SpaceTime namespace lorentzGroup open GroupTheory /-- Given a element of `SO(3)` the matrix corresponding to a space-time rotation. -/ @[simp] def SO3ToMatrix (A : SO(3)) : Matrix (Fin 4) (Fin 4) ℝ := Matrix.reindex finSumFinEquiv finSumFinEquiv (Matrix.fromBlocks 1 0 0 A.1) lemma SO3ToMatrix_PreservesηLin (A : SO(3)) : PreservesηLin $ SO3ToMatrix A := by rw [PreservesηLin.iff_matrix] simp only [η_block, Nat.reduceAdd, Matrix.reindex_apply, SO3ToMatrix, Matrix.transpose_submatrix, Matrix.fromBlocks_transpose, Matrix.transpose_one, Matrix.transpose_zero, Matrix.submatrix_mul_equiv, Matrix.fromBlocks_multiply, mul_one, Matrix.mul_zero, add_zero, Matrix.zero_mul, Matrix.mul_one, neg_mul, one_mul, zero_add, Matrix.mul_neg, neg_zero, mul_neg, neg_neg, Matrix.mul_eq_one_comm.mpr A.2.2, Matrix.fromBlocks_one, Matrix.submatrix_one_equiv] lemma SO3ToMatrix_injective : Function.Injective SO3ToMatrix := by intro A B h erw [Equiv.apply_eq_iff_eq] at h have h1 := congrArg Matrix.toBlocks₂₂ h rw [Matrix.toBlocks_fromBlocks₂₂, Matrix.toBlocks_fromBlocks₂₂] at h1 apply Subtype.eq exact h1 /-- Given a element of `SO(3)` the element of the Lorentz group corresponding to a space-time rotation. -/ def SO3ToLorentz : SO(3) →* 𝓛 where toFun A := ⟨SO3ToMatrix A, SO3ToMatrix_PreservesηLin A⟩ map_one' := by apply Subtype.eq simp only [SO3ToMatrix, Nat.reduceAdd, Matrix.reindex_apply, lorentzGroupIsGroup_one_coe] erw [Matrix.fromBlocks_one] exact Matrix.submatrix_one_equiv finSumFinEquiv.symm map_mul' A B := by apply Subtype.eq simp [Matrix.fromBlocks_multiply] end lorentzGroup end SpaceTime end