/- Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Joseph Tooby-Smith -/ import Mathlib.LinearAlgebra.StdBasis import HepLean.SpaceTime.LorentzTensor.Basic import HepLean.SpaceTime.LorentzTensor.IndexNotation.Basic /-! # Einstein notation for real tensors Einstein notation is a specific example of index notation, with only one color. In this file we define Einstein notation for generic ring `R`. -/ open TensorProduct /-- Einstein tensors have only one color, corresponding to a `down` index. . -/ def einsteinTensorColor : TensorColor where Color := Unit τ a := a τ_involutive μ := by rfl instance : Fintype einsteinTensorColor.Color := Unit.fintype instance : DecidableEq einsteinTensorColor.Color := instDecidableEqPUnit variable {R : Type} [CommSemiring R] /-- The `TensorStructure` associated with `n`-dimensional tensors. -/ noncomputable def einsteinTensor (R : Type) [CommSemiring R] (n : ℕ) : TensorStructure R where toTensorColor := einsteinTensorColor ColorModule _ := Fin n → R colorModule_addCommMonoid _ := Pi.addCommMonoid colorModule_module _ := Pi.Function.module (Fin n) R R contrDual _ := TensorProduct.lift (Fintype.total R R) contrDual_symm a x y := by simp only [lift.tmul, Fintype.total_apply, smul_eq_mul, mul_comm, Equiv.cast_refl, Equiv.refl_apply] unit a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i unit_rid a x:= by simp only [Pi.basisFun_apply] rw [tmul_sum, map_sum] trans ∑ i, x i • Pi.basisFun R (Fin n) i · refine Finset.sum_congr rfl (fun i _ => ?_) simp only [TensorStructure.contrLeftAux, LinearEquiv.refl_toLinearMap, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, assoc_symm_tmul, map_tmul, lift.tmul, Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, ite_mul, one_mul, zero_mul, Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, LinearMap.id_coe, id_eq, lid_tmul, Pi.basisFun_apply] · funext a simp only [Pi.basisFun_apply, Finset.sum_apply, Pi.smul_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero, Finset.sum_ite_eq', Finset.mem_univ, ↓reduceIte] metric a := ∑ i, Pi.basisFun R (Fin n) i ⊗ₜ[R] Pi.basisFun R (Fin n) i metric_dual a := by simp only [Pi.basisFun_apply, map_sum, comm_tmul] rw [tmul_sum, map_sum] refine Finset.sum_congr rfl (fun i _ => ?_) rw [sum_tmul, map_sum, Fintype.sum_eq_single i] · simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap, TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul, Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero, Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, one_smul] · intro x hi simp only [TensorStructure.contrMidAux, LinearEquiv.refl_toLinearMap, TensorStructure.contrLeftAux, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, assoc_tmul, map_tmul, LinearMap.id_coe, id_eq, assoc_symm_tmul, lift.tmul, Fintype.total_apply, LinearMap.stdBasis_apply', smul_eq_mul, mul_ite, mul_one, mul_zero, Finset.sum_ite_eq, Finset.mem_univ, ↓reduceIte, lid_tmul, ite_smul, one_smul, zero_smul] rw [if_neg] simp only [tmul_zero] exact id (Ne.symm hi) instance : IndexNotation einsteinTensorColor.Color where charList := {'ᵢ'} notaEquiv := ⟨fun _ => ⟨'ᵢ', Finset.mem_singleton.mpr rfl⟩, fun _ => Unit.unit, fun _ => rfl, by intro c have hc2 := c.2 simp only [↓Char.isValue, Finset.mem_singleton] at hc2 exact SetCoe.ext (id (Eq.symm hc2))⟩