PhysLean/HepLean/PerturbationTheory/WickContraction/TimeContract.lean
2025-02-05 10:04:41 +00:00

179 lines
7.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.PerturbationTheory.WickContraction.Sign.Basic
import HepLean.PerturbationTheory.FieldOpAlgebra.TimeContraction
/-!
# Time contractions
-/
open FieldSpecification
variable {𝓕 : FieldSpecification}
namespace WickContraction
variable {n : } (c : WickContraction n)
open HepLean.List
open FieldOpAlgebra
/-- Given a Wick contraction `φsΛ` associated with a list `φs`, the
product of all time-contractions of pairs of contracted elements in `φs`,
as a member of the center of `𝓞.A`. -/
noncomputable def timeContract {φs : List 𝓕.FieldOp}
(φsΛ : WickContraction φs.length) :
Subalgebra.center 𝓕.FieldOpAlgebra :=
∏ (a : φsΛ.1), ⟨FieldOpAlgebra.timeContract
(φs.get (φsΛ.fstFieldOfContract a)) (φs.get (φsΛ.sndFieldOfContract a)),
timeContract_mem_center _ _⟩
/-- For `φsΛ` a Wick contraction for `φs`, the time contraction `(φsΛ ↩Λ φ i none).timeContract 𝓞`
is equal to `φsΛ.timeContract 𝓞`.
This result follows from the fact that `timeContract` only depends on contracted pairs,
and `(φsΛ ↩Λ φ i none)` has the 'same' contracted pairs as `φsΛ`. -/
@[simp]
lemma timeContract_insertAndContract_none (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) :
(φsΛ ↩Λ φ i none).timeContract = φsΛ.timeContract := by
rw [timeContract, insertAndContract_none_prod_contractions]
congr
ext a
simp
/-- For `φsΛ` a Wick contraction for `φs = φ₀…φₙ`, the time contraction
`(φsΛ ↩Λ φ i (some j)).timeContract 𝓞` is equal to the multiple of
- the time contraction of `φ` with `φⱼ` if `i < i.succAbove j` else
`φⱼ` with `φ`.
- `φsΛ.timeContract 𝓞`.
This follows from the fact that `(φsΛ ↩Λ φ i (some j))` has one more contracted pair than `φsΛ`,
corresponding to `φ` contracted with `φⱼ`. The order depends on whether we insert `φ` before
or after `φⱼ`. -/
lemma timeContract_insertAndContract_some
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).timeContract =
(if i < i.succAbove j then
⟨FieldOpAlgebra.timeContract φ φs[j.1], timeContract_mem_center _ _⟩
else ⟨FieldOpAlgebra.timeContract φs[j.1] φ, timeContract_mem_center _ _⟩) *
φsΛ.timeContract := by
rw [timeContract, insertAndContract_some_prod_contractions]
congr 1
· simp only [Nat.succ_eq_add_one, insertAndContract_fstFieldOfContract_some_incl, finCongr_apply,
List.get_eq_getElem, insertAndContract_sndFieldOfContract_some_incl, Fin.getElem_fin]
split
· simp
· simp
· congr
ext a
simp
@[simp]
lemma timeContract_empty (φs : List 𝓕.FieldOp) :
(@empty φs.length).timeContract = 1 := by
rw [timeContract, empty]
simp
open FieldStatistic
lemma timeContract_insertAndContract_some_eq_mul_contractStateAtIndex_lt
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(ht : 𝓕.timeOrderRel φ φs[k.1]) (hik : i < i.succAbove k) :
(φsΛ ↩Λ φ i (some k)).timeContract =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x < k))⟩)
• (contractStateAtIndex φ [φsΛ]ᵘᶜ ((uncontractedFieldOpEquiv φs φsΛ) (some k)) *
φsΛ.timeContract) := by
rw [timeContract_insertAndContract_some]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
Algebra.smul_mul_assoc, uncontractedListGet]
· simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_of_timeOrderRel]
trans (1 : ) • ((superCommute (anPart φ)) (ofFieldOp φs[k.1]) * ↑φsΛ.timeContract)
· simp
simp only [smul_smul]
congr 1
have h1 : ofList 𝓕.statesStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
(List.map φs.get φsΛ.uncontractedList))
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
simp only [ofFinset]
congr
rw [← List.map_take]
congr
rw [take_uncontractedIndexEquiv_symm]
rw [filter_uncontractedList]
rw [h1]
simp only [exchangeSign_mul_self]
· exact ht
lemma timeContract_insertAndContract_some_eq_mul_contractStateAtIndex_not_lt
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(ht : ¬ 𝓕.timeOrderRel φs[k.1] φ) (hik : ¬ i < i.succAbove k) :
(φsΛ ↩Λ φ i (some k)).timeContract =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, (φsΛ.uncontracted.filter (fun x => x ≤ k))⟩)
• (contractStateAtIndex φ [φsΛ]ᵘᶜ
((uncontractedFieldOpEquiv φs φsΛ) (some k)) * φsΛ.timeContract) := by
rw [timeContract_insertAndContract_some]
simp only [Nat.succ_eq_add_one, Fin.getElem_fin, ite_mul, instCommGroup.eq_1,
contractStateAtIndex, uncontractedFieldOpEquiv, Equiv.optionCongr_apply,
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply, Fin.coe_cast,
List.getElem_map, uncontractedList_getElem_uncontractedIndexEquiv_symm, List.get_eq_getElem,
Algebra.smul_mul_assoc, uncontractedListGet]
simp only [hik, ↓reduceIte, MulMemClass.coe_mul]
rw [timeContract_of_not_timeOrderRel, timeContract_of_timeOrderRel]
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, smul_smul]
congr
have h1 : ofList 𝓕.statesStatistic (List.take (↑(φsΛ.uncontractedIndexEquiv.symm k))
(List.map φs.get φsΛ.uncontractedList))
= (𝓕 |>ₛ ⟨φs.get, (Finset.filter (fun x => x < k) φsΛ.uncontracted)⟩) := by
simp only [ofFinset]
congr
rw [← List.map_take]
congr
rw [take_uncontractedIndexEquiv_symm, filter_uncontractedList]
rw [h1]
trans 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ⟨φs.get, {k.1}⟩)
· rw [exchangeSign_symm, ofFinset_singleton]
simp
rw [← map_mul]
congr
rw [ofFinset_union]
congr
ext a
simp only [Finset.mem_singleton, Finset.mem_sdiff, Finset.mem_union, Finset.mem_filter,
Finset.mem_inter, not_and, not_lt, and_imp]
apply Iff.intro
· intro h
subst h
simp
· intro h
have h1 := h.1
rcases h1 with h1 | h1
· have h2' := h.2 h1.1 h1.2 h1.1
omega
· have h2' := h.2 h1.1 (by omega) h1.1
omega
have ht := IsTotal.total (r := timeOrderRel) φs[k.1] φ
simp_all only [Fin.getElem_fin, Nat.succ_eq_add_one, not_lt, false_or]
exact ht
lemma timeContract_of_not_gradingCompliant (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (h : ¬ GradingCompliant φs φsΛ) :
φsΛ.timeContract = 0 := by
rw [timeContract]
simp only [GradingCompliant, Fin.getElem_fin, Subtype.forall, not_forall] at h
obtain ⟨a, ha⟩ := h
obtain ⟨ha, ha2⟩ := ha
apply Finset.prod_eq_zero (i := ⟨a, ha⟩)
simp only [Finset.univ_eq_attach, Finset.mem_attach]
apply Subtype.eq
simp only [List.get_eq_getElem, ZeroMemClass.coe_zero]
rw [timeContract_zero_of_diff_grade]
simp [ha2]
end WickContraction