PhysLean/HepLean/SpaceTime/WeylFermion/Basic.lean
2024-09-16 07:40:15 -04:00

61 lines
2.5 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Meta.Informal
/-!
# Weyl fermions
-/
/-!
## The definition of Weyl fermion vector spaces.
-/
informal_definition leftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the fundamental representation of SL(2,C)."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition rightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the conjguate representation of SL(2,C)."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altLeftHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
informal_definition altRightHandedWeylFermion where
math :≈ "The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†."
ref :≈ "https://particle.physics.ucdavis.edu/modernsusy/slides/slideimages/spinorfeynrules.pdf"
/-!
## Equivalences between Weyl fermion vector spaces.
-/
informal_definition leftHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between leftHandedWeylFermion and altLeftHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix εᵃ⁰ᵃ¹ ={{0, 1}, {-1, 0}}."
deps :≈ [`leftHandedWeylFermion, `altLeftHandedWeylFermion]
informal_lemma leftHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv leftHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on leftHandedWeylFermion and altLeftHandedWeylFermion."
deps :≈ [`leftHandedWeylFermionAltEquiv]
informal_definition rightHandedWeylFermionAltEquiv where
math :≈ "The linear equiv between rightHandedWeylFermion and altRightHandedWeylFermion given
by multiplying an element of rightHandedWeylFermion by the matrix εᵃ⁰ᵃ¹ ={{0, 1}, {-1, 0}}."
deps :≈ [`rightHandedWeylFermion, `altRightHandedWeylFermion]
informal_lemma rightHandedWeylFermionAltEquiv_equivariant where
math :≈ "The linear equiv rightHandedWeylFermionAltEquiv is equivariant with respect to the
action of SL(2,C) on rightHandedWeylFermion and altRightHandedWeylFermion."
deps :≈ [`rightHandedWeylFermionAltEquiv]