150 lines
4 KiB
Text
150 lines
4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.LinearAlgebra.UnitaryGroup
|
||
import Mathlib.LinearAlgebra.Matrix.GeneralLinearGroup
|
||
import Mathlib.Data.Complex.Exponential
|
||
import Mathlib.Geometry.Manifold.VectorBundle.Basic
|
||
/-!
|
||
# the 3d special orthogonal group
|
||
|
||
|
||
|
||
-/
|
||
|
||
namespace GroupTheory
|
||
open Matrix
|
||
|
||
def SO3 : Type := {A : Matrix (Fin 3) (Fin 3) ℝ // A.det = 1 ∧ A * Aᵀ = 1}
|
||
|
||
instance SO3Group : Group SO3 where
|
||
mul A B := ⟨A.1 * B.1,
|
||
by
|
||
simp only [det_mul, A.2.1, B.2.1, mul_one],
|
||
by
|
||
simp [A.2.2, B.2.2, ← Matrix.mul_assoc, Matrix.mul_assoc]⟩
|
||
mul_assoc A B C := by
|
||
apply Subtype.eq
|
||
exact Matrix.mul_assoc A.1 B.1 C.1
|
||
one := ⟨1, by simp, by simp⟩
|
||
one_mul A := by
|
||
apply Subtype.eq
|
||
exact Matrix.one_mul A.1
|
||
mul_one A := by
|
||
apply Subtype.eq
|
||
exact Matrix.mul_one A.1
|
||
inv A := ⟨A.1ᵀ, by simp [A.2], by simp [mul_eq_one_comm.mpr A.2.2]⟩
|
||
mul_left_inv A := by
|
||
apply Subtype.eq
|
||
exact mul_eq_one_comm.mpr A.2.2
|
||
|
||
scoped[GroupTheory] notation (name := SO3_notation) "SO(3)" => SO3
|
||
|
||
/-- SO3 has the subtype topology. -/
|
||
instance : TopologicalSpace SO3 := instTopologicalSpaceSubtype
|
||
|
||
namespace SO3
|
||
|
||
@[simp]
|
||
lemma coe_inv (A : SO3) : (A⁻¹).1 = A.1⁻¹:= by
|
||
refine (inv_eq_left_inv ?h).symm
|
||
exact mul_eq_one_comm.mpr A.2.2
|
||
|
||
@[simps!]
|
||
def toGL : SO3 →* GL (Fin 3) ℝ where
|
||
toFun A := ⟨A.1, (A⁻¹).1, A.2.2, mul_eq_one_comm.mpr A.2.2⟩
|
||
map_one' := by
|
||
simp
|
||
rfl
|
||
map_mul' x y := by
|
||
simp
|
||
ext
|
||
rfl
|
||
|
||
lemma subtype_val_eq_toGL : (Subtype.val : SO3 → Matrix (Fin 3) (Fin 3) ℝ) =
|
||
Units.val ∘ toGL.toFun := by
|
||
ext A
|
||
rfl
|
||
|
||
lemma toGL_injective : Function.Injective toGL := by
|
||
intro A B h
|
||
apply Subtype.eq
|
||
rw [@Units.ext_iff] at h
|
||
simpa using h
|
||
|
||
example : TopologicalSpace (GL (Fin 3) ℝ) := by
|
||
exact Units.instTopologicalSpaceUnits
|
||
|
||
@[simps!]
|
||
def toProd : SO(3) →* (Matrix (Fin 3) (Fin 3) ℝ) × (Matrix (Fin 3) (Fin 3) ℝ)ᵐᵒᵖ :=
|
||
MonoidHom.comp (Units.embedProduct _) toGL
|
||
|
||
lemma toProd_eq_transpose : toProd A = (A.1, ⟨A.1ᵀ⟩) := by
|
||
simp only [toProd, Units.embedProduct, coe_units_inv, MulOpposite.op_inv, toGL, coe_inv,
|
||
MonoidHom.coe_comp, MonoidHom.coe_mk, OneHom.coe_mk, Function.comp_apply, Prod.mk.injEq,
|
||
true_and]
|
||
refine MulOpposite.unop_inj.mp ?_
|
||
simp only [MulOpposite.unop_inv, MulOpposite.unop_op]
|
||
rw [← coe_inv]
|
||
rfl
|
||
|
||
lemma toProd_injective : Function.Injective toProd := by
|
||
intro A B h
|
||
rw [toProd_eq_transpose, toProd_eq_transpose] at h
|
||
rw [@Prod.mk.inj_iff] at h
|
||
apply Subtype.eq
|
||
exact h.1
|
||
|
||
lemma toProd_continuous : Continuous toProd := by
|
||
change Continuous (fun A => (A.1, ⟨A.1ᵀ⟩))
|
||
refine continuous_prod_mk.mpr (And.intro ?_ ?_)
|
||
exact continuous_iff_le_induced.mpr fun U a => a
|
||
refine Continuous.comp' ?_ ?_
|
||
exact MulOpposite.continuous_op
|
||
refine Continuous.matrix_transpose ?_
|
||
exact continuous_iff_le_induced.mpr fun U a => a
|
||
|
||
|
||
def embeddingProd : Embedding toProd where
|
||
inj := toProd_injective
|
||
induced := by
|
||
refine (inducing_iff ⇑toProd).mp ?_
|
||
refine inducing_of_inducing_compose toProd_continuous continuous_fst ?hgf
|
||
exact (inducing_iff (Prod.fst ∘ ⇑toProd)).mpr rfl
|
||
|
||
|
||
def embeddingGL : Embedding toGL.toFun where
|
||
inj := toGL_injective
|
||
induced := by
|
||
refine ((fun {X} {t t'} => TopologicalSpace.ext_iff.mpr) ?_).symm
|
||
intro s
|
||
rw [TopologicalSpace.ext_iff.mp embeddingProd.induced s ]
|
||
rw [isOpen_induced_iff, isOpen_induced_iff]
|
||
apply Iff.intro ?_ ?_
|
||
· intro h
|
||
obtain ⟨U, hU1, hU2⟩ := h
|
||
rw [isOpen_induced_iff] at hU1
|
||
obtain ⟨V, hV1, hV2⟩ := hU1
|
||
use V
|
||
simp [hV1]
|
||
rw [← hU2, ← hV2]
|
||
rfl
|
||
· intro h
|
||
obtain ⟨U, hU1, hU2⟩ := h
|
||
let t := (Units.embedProduct _) ⁻¹' U
|
||
use t
|
||
apply And.intro (isOpen_induced hU1)
|
||
exact hU2
|
||
|
||
instance : TopologicalGroup SO(3) :=
|
||
Inducing.topologicalGroup toGL embeddingGL.toInducing
|
||
|
||
|
||
|
||
|
||
end SO3
|
||
|
||
|
||
end GroupTheory
|