PhysLean/HepLean/SpaceTime/LorentzVector/LorentzAction.lean
2024-09-04 06:28:46 -04:00

41 lines
1.3 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzVector.Basic
import HepLean.SpaceTime.LorentzGroup.Basic
import Mathlib.RepresentationTheory.Basic
/-!
# Lorentz group action on Lorentz vectors.
-/
noncomputable section
namespace LorentzVector
variable {d : } (v : LorentzVector d)
/-- The contravariant action of the Lorentz group on a Lorentz vector. -/
def rep : Representation (LorentzGroup d) (LorentzVector d) where
toFun g := Matrix.toLinAlgEquiv e g
map_one' := (MulEquivClass.map_eq_one_iff (Matrix.toLinAlgEquiv e)).mpr rfl
map_mul' x y := by
simp only [lorentzGroupIsGroup_mul_coe, map_mul]
open Matrix in
lemma rep_apply (g : LorentzGroup d) : rep g v = g *ᵥ v := rfl
lemma rep_apply_stdBasis (g : LorentzGroup d) (μ : Fin 1 ⊕ Fin d) :
rep g (stdBasis μ) = ∑ ν, g.1.transpose μ ν • stdBasis ν := by
simp only [rep_apply, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
Finset.sum_singleton, decomp_stdBasis']
funext ν
simp [LorentzVector.stdBasis, Pi.basisFun_apply]
erw [Pi.basisFun_apply, Matrix.mulVec_single_one]
rfl
end LorentzVector
end