83 lines
2.1 KiB
Text
83 lines
2.1 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.FeynmanDiagrams.Basic
|
||
/-!
|
||
# Feynman diagrams in Phi^4 theory
|
||
|
||
The aim of this file is to start building up the theory of Feynman diagrams in the context of
|
||
Phi^4 theory.
|
||
|
||
|
||
-/
|
||
|
||
|
||
namespace PhiFour
|
||
open CategoryTheory
|
||
open FeynmanDiagram
|
||
open PreFeynmanRule
|
||
|
||
@[simps!]
|
||
def phi4PreFeynmanRules : PreFeynmanRule where
|
||
/- There is only 1 type of `half-edge`. -/
|
||
HalfEdgeLabel := Fin 1
|
||
/- There is only 1 type of `edge`. -/
|
||
EdgeLabel := Fin 1
|
||
/- There are two types of `vertex`, external `0` and internal `1`. -/
|
||
VertexLabel := Fin 2
|
||
edgeLabelMap x :=
|
||
match x with
|
||
| 0 => Over.mk ![0, 0]
|
||
vertexLabelMap x :=
|
||
match x with
|
||
| 0 => Over.mk ![0]
|
||
| 1 => Over.mk ![0, 0, 0, 0]
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.EdgeLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.HalfEdgeLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
instance (a : ℕ) : OfNat phi4PreFeynmanRules.VertexLabel a where
|
||
ofNat := (a : Fin _)
|
||
|
||
|
||
instance : IsFinitePreFeynmanRule phi4PreFeynmanRules where
|
||
edgeLabelDecidable := instDecidableEqFin _
|
||
vertexLabelDecidable := instDecidableEqFin _
|
||
halfEdgeLabelDecidable := instDecidableEqFin _
|
||
vertexMapFintype := fun v =>
|
||
match v with
|
||
| 0 => Fin.fintype _
|
||
| 1 => Fin.fintype _
|
||
edgeMapFintype := fun v =>
|
||
match v with
|
||
| 0 => Fin.fintype _
|
||
vertexMapDecidable := fun v =>
|
||
match v with
|
||
| 0 => instDecidableEqFin _
|
||
| 1 => instDecidableEqFin _
|
||
edgeMapDecidable := fun v =>
|
||
match v with
|
||
| 0 => instDecidableEqFin _
|
||
|
||
|
||
def figureEight : FeynmanDiagram phi4PreFeynmanRules :=
|
||
mk' ![0, 0] ![1] ![⟨0, 0, 0⟩, ⟨0, 0, 0⟩, ⟨0, 1, 0⟩, ⟨0, 1, 0⟩] (by decide)
|
||
|
||
instance : IsFiniteDiagram figureEight where
|
||
𝓔Fintype := Fin.fintype _
|
||
𝓔DecidableEq := instDecidableEqFin _
|
||
𝓥Fintype := Fin.fintype _
|
||
𝓥DecidableEq := instDecidableEqFin _
|
||
𝓱𝓔Fintype := Fin.fintype _
|
||
𝓱𝓔DecidableEq := instDecidableEqFin _
|
||
|
||
#eval symmetryFactor figureEight
|
||
|
||
#eval Connected figureEight
|
||
|
||
end PhiFour
|