471 lines
20 KiB
Text
471 lines
20 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
|
||
/-!
|
||
|
||
# Contraction of indices
|
||
|
||
We define a number of ways to contract indices of tensors:
|
||
|
||
- `contrDualLeft`: Contracts vectors on the left as:
|
||
`𝓣.ColorModule ν ⊗[R] 𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η →ₗ[R] 𝓣.ColorModule η`
|
||
|
||
- `contrDualMid`: Contracts vectors in the middle as:
|
||
`(𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν) ⊗[R] (𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η) →ₗ[R]`
|
||
`𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η`
|
||
|
||
- `contrAll'`: Contracts all indices of manifestly tensors with manifestly dual colors as:
|
||
`𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R`
|
||
|
||
- `contrAll`: Contracts all indices of tensors with dual colors as:
|
||
`𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] R`
|
||
|
||
- `contrAllLeft`: Contracts all indices of tensors on the left as:
|
||
`𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ →ₗ[R] 𝓣.Tensor cZ`
|
||
|
||
- `contrElim`: Contracting indices of tensors indexed by `Sum.elim _ _` as:
|
||
`𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ) →ₗ[R] 𝓣.Tensor (Sum.elim cW cZ)`
|
||
|
||
-/
|
||
|
||
/-! TODO: Define contraction based on an equivalence `(C ⊗ C) ⊗ P ≃ X` satisfying ... . -/
|
||
|
||
noncomputable section
|
||
|
||
open TensorProduct
|
||
open MulActionTensor
|
||
|
||
variable {R : Type} [CommSemiring R]
|
||
|
||
namespace TensorColor
|
||
|
||
variable {d : ℕ} {X X' Y Y' Z W : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||
variable {d : ℕ} {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||
[Fintype C] [DecidableEq C] [Fintype P] [DecidableEq P]
|
||
|
||
namespace ColorMap
|
||
|
||
variable {𝓒 : TensorColor} [Fintype 𝓒.Color] [DecidableEq 𝓒.Color]
|
||
|
||
variable (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) (cZ : ColorMap 𝓒 Z)
|
||
|
||
/-- Given an equivalence `e` of types the condition that the color map `cX` is the dual to `cY`
|
||
up to this equivalence. -/
|
||
def ContrAll (e : X ≃ Y) (cX : ColorMap 𝓒 X) (cY : ColorMap 𝓒 Y) : Prop :=
|
||
cX = 𝓒.τ ∘ cY ∘ e
|
||
|
||
namespace ContrAll
|
||
|
||
variable {e : X ≃ Y} {e' : Y ≃ Z} {cX : ColorMap 𝓒 X} {cY : ColorMap 𝓒 Y} {cZ : ColorMap 𝓒 Z}
|
||
variable {cX' : ColorMap 𝓒 X'} {cY' : ColorMap 𝓒 Y'}
|
||
|
||
lemma toMapIso (h : cX.ContrAll e cY) : cX.MapIso e cY.dual := by
|
||
subst h
|
||
rfl
|
||
|
||
lemma symm (h : cX.ContrAll e cY) : cY.ContrAll e.symm cX := by
|
||
subst h
|
||
funext x
|
||
simp only [Function.comp_apply, Equiv.apply_symm_apply]
|
||
exact (𝓒.τ_involutive (cY x)).symm
|
||
|
||
lemma trans_mapIso {e : X ≃ Y} {e' : Z ≃ Y}
|
||
(h : cX.ContrAll e cY) (h' : cZ.MapIso e' cY) : cX.ContrAll (e.trans e'.symm) cZ := by
|
||
subst h h'
|
||
funext x
|
||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||
|
||
lemma mapIso_trans {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) : cZ.ContrAll (e'.trans e) cY := by
|
||
subst h h'
|
||
funext x
|
||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||
|
||
end ContrAll
|
||
|
||
/-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on to `P`. -/
|
||
def contr (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 P :=
|
||
cX ∘ e ∘ Sum.inr
|
||
|
||
/-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on `X`
|
||
to the first `C`. -/
|
||
def contrLeft (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 C :=
|
||
cX ∘ e ∘ Sum.inl ∘ Sum.inl
|
||
|
||
/-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the restriction of a color map `cX` on `X`
|
||
to the second `C`. -/
|
||
def contrRight (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : ColorMap 𝓒 C :=
|
||
cX ∘ e ∘ Sum.inl ∘ Sum.inr
|
||
|
||
/-- Given an equivalence `(C ⊕ C) ⊕ P ≃ X` the condition on `cX` so that we contract
|
||
the indices of the `C`'s under this equivalence. -/
|
||
def ContrCond (e : (C ⊕ C) ⊕ P ≃ X) (cX : ColorMap 𝓒 X) : Prop :=
|
||
cX ∘ e ∘ Sum.inl ∘ Sum.inl = 𝓒.τ ∘ cX ∘ e ∘ Sum.inl ∘ Sum.inr
|
||
|
||
namespace ContrCond
|
||
|
||
variable {e : (C ⊕ C) ⊕ P ≃ X} {e' : Y ≃ Z} {cX : ColorMap 𝓒 X} {cY : ColorMap 𝓒 Y}
|
||
{cZ : ColorMap 𝓒 Z}
|
||
|
||
variable {cX' : ColorMap 𝓒 X'} {cY' : ColorMap 𝓒 Y'}
|
||
|
||
lemma to_contrAll (h : cX.ContrCond e) :
|
||
(cX.contrLeft e).ContrAll (Equiv.refl _) (cX.contrRight e) := h
|
||
|
||
end ContrCond
|
||
|
||
end ColorMap
|
||
|
||
end TensorColor
|
||
|
||
namespace TensorStructure
|
||
|
||
variable (𝓣 : TensorStructure R)
|
||
|
||
variable {d : ℕ} {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z] [Fintype W] [DecidableEq W]
|
||
[Fintype C] [DecidableEq C] [Fintype P] [DecidableEq P]
|
||
{cX cX2 : 𝓣.ColorMap X} {cY : 𝓣.ColorMap Y} {cZ : 𝓣.ColorMap Z}
|
||
{cW : 𝓣.ColorMap W} {cY' : 𝓣.ColorMap Y'} {μ ν: 𝓣.Color}
|
||
|
||
variable {G H : Type} [Group G] [Group H] [MulActionTensor G 𝓣]
|
||
local infixl:101 " • " => 𝓣.rep
|
||
/-!
|
||
|
||
# Contractions of vectors
|
||
|
||
-/
|
||
|
||
/-- The contraction of a vector in `𝓣.ColorModule ν` with a vector in
|
||
`𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η` to form a vector in `𝓣.ColorModule η`. -/
|
||
def contrDualLeft {ν η : 𝓣.Color} :
|
||
𝓣.ColorModule ν ⊗[R] 𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η →ₗ[R] 𝓣.ColorModule η :=
|
||
contrLeftAux (𝓣.contrDual ν)
|
||
|
||
/-- The contraction of a vector in `𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν` with a vector in
|
||
`𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η` to form a vector in
|
||
`𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η`. -/
|
||
def contrDualMid {μ ν η : 𝓣.Color} :
|
||
(𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule ν) ⊗[R] (𝓣.ColorModule (𝓣.τ ν) ⊗[R] 𝓣.ColorModule η) →ₗ[R]
|
||
𝓣.ColorModule μ ⊗[R] 𝓣.ColorModule η :=
|
||
contrMidAux (𝓣.contrDual ν)
|
||
|
||
/-- A linear map taking tensors mapped with the same index set to the product of paired tensors. -/
|
||
def pairProd : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cX2 →ₗ[R]
|
||
⨂[R] x, 𝓣.ColorModule (cX x) ⊗[R] 𝓣.ColorModule (cX2 x) :=
|
||
TensorProduct.lift (
|
||
PiTensorProduct.map₂ (fun x =>
|
||
TensorProduct.mk R (𝓣.ColorModule (cX x)) (𝓣.ColorModule (cX2 x))))
|
||
|
||
lemma pairProd_tmul_tprod_tprod (fx : (i : X) → 𝓣.ColorModule (cX i))
|
||
(fx2 : (i : X) → 𝓣.ColorModule (cX2 i)) :
|
||
𝓣.pairProd (PiTensorProduct.tprod R fx ⊗ₜ[R] PiTensorProduct.tprod R fx2) =
|
||
PiTensorProduct.tprod R (fun x => fx x ⊗ₜ[R] fx2 x) := by
|
||
simp [pairProd]
|
||
erw [PiTensorProduct.map₂_tprod_tprod]
|
||
rfl
|
||
|
||
lemma mkPiAlgebra_equiv (e : X ≃ Y) :
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) =
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ
|
||
(PiTensorProduct.reindex R _ e).toLinearMap := by
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
||
PiTensorProduct.reindex_tprod, Equiv.prod_comp]
|
||
|
||
/-- Given a tensor in `𝓣.Tensor cX` and a tensor in `𝓣.Tensor (𝓣.τ ∘ cX)`, the element of
|
||
`R` formed by contracting all of their indices. -/
|
||
def contrAll' : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor (𝓣.τ ∘ cX) →ₗ[R] R :=
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ
|
||
(PiTensorProduct.map (fun x => 𝓣.contrDual (cX x))) ∘ₗ
|
||
(𝓣.pairProd)
|
||
|
||
lemma contrAll'_tmul_tprod_tprod (fx : (i : X) → 𝓣.ColorModule (cX i))
|
||
(fy : (i : X) → 𝓣.ColorModule (𝓣.τ (cX i))) :
|
||
𝓣.contrAll' (PiTensorProduct.tprod R fx ⊗ₜ[R] PiTensorProduct.tprod R fy) =
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R))
|
||
(PiTensorProduct.tprod R (fun x => 𝓣.contrDual (cX x) (fx x ⊗ₜ[R] fy x))) := by
|
||
simp only [contrAll', Function.comp_apply, LinearMap.coe_comp, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.mkPiAlgebra_apply]
|
||
erw [pairProd_tmul_tprod_tprod]
|
||
simp only [Function.comp_apply, PiTensorProduct.map_tprod, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.mkPiAlgebra_apply]
|
||
|
||
@[simp]
|
||
lemma contrAll'_isEmpty_tmul [IsEmpty X] (x : 𝓣.Tensor cX) (y : 𝓣.Tensor (𝓣.τ ∘ cX)) :
|
||
𝓣.contrAll' (x ⊗ₜ y) = 𝓣.isEmptyEquiv x * 𝓣.isEmptyEquiv y := by
|
||
refine PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy
|
||
simp [map_add, add_tmul, add_mul, hx, hy])
|
||
intro rx fx
|
||
refine PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp at hx hy
|
||
simp [map_add, tmul_add, mul_add, hx, hy])
|
||
intro ry fy
|
||
simp [smul_tmul]
|
||
ring_nf
|
||
rw [mul_assoc, mul_assoc]
|
||
apply congrArg
|
||
apply congrArg
|
||
simp [contrAll']
|
||
erw [pairProd_tmul_tprod_tprod]
|
||
simp only [Function.comp_apply, PiTensorProduct.map_tprod, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.mkPiAlgebra_apply, Finset.univ_eq_empty, Finset.prod_empty]
|
||
erw [isEmptyEquiv_tprod]
|
||
|
||
@[simp]
|
||
lemma contrAll'_mapIso (e : X ≃ Y) (h : cX.MapIso e cY) :
|
||
𝓣.contrAll' ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap =
|
||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _)
|
||
(𝓣.mapIso e.symm h.symm.dual)).toLinearMap := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦
|
||
PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp at hx hy
|
||
simp [map_add, tmul_add, hx, hy])
|
||
intro ry fy
|
||
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, Function.comp_apply, tmul_smul,
|
||
LinearMapClass.map_smul, LinearMap.coe_comp, LinearEquiv.coe_coe, congr_tmul, mapIso_tprod,
|
||
LinearEquiv.refl_apply, smul_eq_mul, smul_tmul]
|
||
apply congrArg
|
||
apply congrArg
|
||
erw [contrAll'_tmul_tprod_tprod]
|
||
erw [TensorProduct.congr_tmul]
|
||
simp only [PiTensorProduct.lift.tprod, LinearEquiv.refl_apply]
|
||
erw [mapIso_tprod]
|
||
erw [contrAll'_tmul_tprod_tprod]
|
||
rw [mkPiAlgebra_equiv e]
|
||
simp only [Equiv.symm_symm_apply, LinearMap.coe_comp,
|
||
LinearEquiv.coe_coe, Function.comp_apply, PiTensorProduct.reindex_tprod,
|
||
PiTensorProduct.lift.tprod]
|
||
apply congrArg
|
||
funext y
|
||
rw [𝓣.contrDual_cast (congrFun h.symm y)]
|
||
apply congrArg
|
||
congr 1
|
||
simp [colorModuleCast]
|
||
symm
|
||
apply cast_eq_iff_heq.mpr
|
||
simp [colorModuleCast, Equiv.apply_symm_apply]
|
||
rw [Equiv.apply_symm_apply]
|
||
exact HEq.symm (cast_heq _ _)
|
||
|
||
@[simp]
|
||
lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : cX.MapIso e cY) (x : 𝓣.Tensor cX)
|
||
(y : 𝓣.Tensor (𝓣.τ ∘ cY)) : 𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) =
|
||
𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm h.symm.dual y)) := by
|
||
change (𝓣.contrAll' ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _
|
||
rw [contrAll'_mapIso]
|
||
rfl
|
||
|
||
/-- The contraction of all the indices of two tensors with dual colors. -/
|
||
def contrAll (e : X ≃ Y) (h : cX.ContrAll e cY) : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY →ₗ[R] R :=
|
||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
|
||
(𝓣.mapIso e.symm h.symm.toMapIso)).toLinearMap
|
||
|
||
lemma contrAll_tmul (e : X ≃ Y) (h : cX.ContrAll e cY) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
|
||
𝓣.contrAll e h (x ⊗ₜ[R] y) = 𝓣.contrAll' (x ⊗ₜ[R] ((𝓣.mapIso e.symm h.symm.toMapIso) y)) := by
|
||
rw [contrAll]
|
||
simp only [LinearMap.coe_comp, Function.comp_apply]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y)
|
||
(h : c.ContrAll e cY) (h' : cZ.MapIso e' cY) (x : 𝓣.Tensor c) (z : 𝓣.Tensor cZ) :
|
||
𝓣.contrAll e h (x ⊗ₜ[R] 𝓣.mapIso e' h' z) =
|
||
𝓣.contrAll (e.trans e'.symm) (h.trans_mapIso h') (x ⊗ₜ[R] z) := by
|
||
simp only [contrAll_tmul, mapIso_mapIso]
|
||
apply congrArg
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y)
|
||
(h : c.ContrAll e cY) (h' : cZ.MapIso e' cY) : 𝓣.contrAll e h ∘ₗ
|
||
(TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap
|
||
= 𝓣.contrAll (e.trans e'.symm) (h.trans_mapIso h') := by
|
||
apply TensorProduct.ext'
|
||
intro x y
|
||
exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) (x : 𝓣.Tensor cZ) (y : 𝓣.Tensor cY) :
|
||
𝓣.contrAll e h (𝓣.mapIso e' h' x ⊗ₜ[R] y) =
|
||
𝓣.contrAll (e'.trans e) (h.mapIso_trans h') (x ⊗ₜ[R] y) := by
|
||
simp only [contrAll_tmul, contrAll'_mapIso_tmul, mapIso_mapIso]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : cX.ContrAll e cY) (h' : cZ.MapIso e' cX) :
|
||
𝓣.contrAll e h ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor cY))).toLinearMap
|
||
= 𝓣.contrAll (e'.trans e) (h.mapIso_trans h') := by
|
||
apply TensorProduct.ext'
|
||
intro x y
|
||
exact 𝓣.contrAll_mapIso_left_tmul h h' x y
|
||
|
||
/-- The linear map from `𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ` to
|
||
`𝓣.Tensor cZ` obtained by contracting all indices in `𝓣.Tensor cX` and `𝓣.Tensor cY`,
|
||
given a proof that this is possible. -/
|
||
def contrAllLeft (e : X ≃ Y) (h : cX.ContrAll e cY) :
|
||
𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ →ₗ[R] 𝓣.Tensor cZ :=
|
||
(TensorProduct.lid R _).toLinearMap ∘ₗ
|
||
TensorProduct.map (𝓣.contrAll e h) (LinearEquiv.refl R (𝓣.Tensor cZ)).toLinearMap
|
||
∘ₗ (TensorProduct.assoc R _ _ _).symm.toLinearMap
|
||
|
||
/-- The linear map from `(𝓣.Tensor cW ⊗[R] 𝓣.Tensor cX) ⊗[R] (𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ)`
|
||
to `𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ` obtained by contracting all indices of the tensors
|
||
in the middle. -/
|
||
def contrAllMid (e : X ≃ Y) (h : cX.ContrAll e cY) :
|
||
(𝓣.Tensor cW ⊗[R] 𝓣.Tensor cX) ⊗[R] (𝓣.Tensor cY ⊗[R] 𝓣.Tensor cZ) →ₗ[R]
|
||
𝓣.Tensor cW ⊗[R] 𝓣.Tensor cZ :=
|
||
(TensorProduct.map (LinearEquiv.refl R _).toLinearMap (𝓣.contrAllLeft e h)) ∘ₗ
|
||
(TensorProduct.assoc R _ _ _).toLinearMap
|
||
|
||
/-- The linear map from `𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ)`
|
||
to `𝓣.Tensor (Sum.elim cW cZ)` formed by contracting the indices specified by
|
||
`cX` and `cY`, which are assumed to be dual. -/
|
||
def contrElim (e : X ≃ Y) (h : cX.ContrAll e cY) :
|
||
𝓣.Tensor (Sum.elim cW cX) ⊗[R] 𝓣.Tensor (Sum.elim cY cZ) →ₗ[R] 𝓣.Tensor (Sum.elim cW cZ) :=
|
||
(𝓣.tensoratorEquiv cW cZ).toLinearMap ∘ₗ 𝓣.contrAllMid e h ∘ₗ
|
||
(TensorProduct.congr (𝓣.tensoratorEquiv cW cX).symm
|
||
(𝓣.tensoratorEquiv cY cZ).symm).toLinearMap
|
||
|
||
/-!
|
||
|
||
## Group acting on contraction
|
||
|
||
-/
|
||
|
||
@[simp]
|
||
lemma contrAll_rep (e : X ≃ Y) (h : cX.ContrAll e cY) (g : G) :
|
||
𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.contrAll e h := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦ PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
refine fun y ↦ PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp at hx hy
|
||
simp [map_add, tmul_add, hx, hy])
|
||
intro ry fy
|
||
simp only [contrAll_tmul, PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, smul_tmul,
|
||
LinearMapClass.map_smul, LinearMap.coe_comp, Function.comp_apply, map_tmul, rep_tprod,
|
||
smul_eq_mul]
|
||
apply congrArg
|
||
apply congrArg
|
||
simp only [contrAll', mapIso_tprod, Equiv.symm_symm_apply, colorModuleCast_equivariant_apply,
|
||
LinearMap.coe_comp, Function.comp_apply]
|
||
apply congrArg
|
||
erw [pairProd_tmul_tprod_tprod, pairProd_tmul_tprod_tprod, PiTensorProduct.map_tprod,
|
||
PiTensorProduct.map_tprod]
|
||
apply congrArg
|
||
funext x
|
||
nth_rewrite 2 [← contrDual_inv (cX x) g]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||
(g : G) (x : 𝓣.Tensor c ⊗ 𝓣.Tensor d) :
|
||
𝓣.contrAll e h (TensorProduct.map (𝓣.rep g) (𝓣.rep g) x) = 𝓣.contrAll e h x := by
|
||
change (𝓣.contrAll e h ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x = _
|
||
rw [contrAll_rep]
|
||
|
||
@[simp]
|
||
lemma contrAll_rep_tmul {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||
(g : G) (x : 𝓣.Tensor c) (y : 𝓣.Tensor d) :
|
||
𝓣.contrAll e h ((g • x) ⊗ₜ[R] (g • y)) = 𝓣.contrAll e h (x ⊗ₜ[R] y) := by
|
||
nth_rewrite 2 [← @contrAll_rep_apply R _ 𝓣 _ _ _ G]
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Contraction based on specification
|
||
|
||
-/
|
||
|
||
lemma contr_cond (e : (C ⊕ C) ⊕ P ≃ X) :
|
||
cX.MapIso e.symm (Sum.elim (Sum.elim (cX.contrLeft e) (cX.contrRight e)) (cX.contr e)) := by
|
||
rw [TensorColor.ColorMap.MapIso, Equiv.eq_comp_symm]
|
||
funext x
|
||
match x with
|
||
| Sum.inl (Sum.inl x) => rfl
|
||
| Sum.inl (Sum.inr x) => rfl
|
||
| Sum.inr x => rfl
|
||
|
||
/-- Contraction of indices based on an equivalence `(C ⊕ C) ⊕ P ≃ X`. The indices
|
||
in `C` are contracted pair-wise, whilst the indices in `P` are preserved. -/
|
||
def contr (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) :
|
||
𝓣.Tensor cX →ₗ[R] 𝓣.Tensor (cX.contr e) :=
|
||
(TensorProduct.lid R _).toLinearMap ∘ₗ
|
||
(TensorProduct.map (𝓣.contrAll (Equiv.refl C) h.to_contrAll) LinearMap.id) ∘ₗ
|
||
(TensorProduct.congr (𝓣.tensoratorEquiv _ _).symm (LinearEquiv.refl R _)).toLinearMap ∘ₗ
|
||
(𝓣.tensoratorEquiv _ _).symm.toLinearMap ∘ₗ
|
||
(𝓣.mapIso e.symm (𝓣.contr_cond e)).toLinearMap
|
||
|
||
open PiTensorProduct in
|
||
lemma contr_tprod (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e) (f : (i : X) → 𝓣.ColorModule (cX i)) :
|
||
𝓣.contr e h (tprod R f) = (𝓣.contrAll (Equiv.refl C) h.to_contrAll
|
||
(tprod R (fun i => f (e (Sum.inl (Sum.inl i)))) ⊗ₜ[R]
|
||
tprod R (fun i => f (e (Sum.inl (Sum.inr i)))))) •
|
||
tprod R (fun (p : P) => f (e (Sum.inr p))) := by
|
||
simp only [contr, LinearEquiv.comp_coe, LinearMap.coe_comp, LinearEquiv.coe_coe,
|
||
Function.comp_apply, LinearEquiv.trans_apply, mapIso_tprod, Equiv.symm_symm_apply,
|
||
tensoratorEquiv_symm_tprod, congr_tmul, LinearEquiv.refl_apply, map_tmul, LinearMap.id_coe,
|
||
id_eq, lid_tmul]
|
||
rw [contrAll_tmul]
|
||
rfl
|
||
|
||
open PiTensorProduct in
|
||
@[simp]
|
||
lemma contr_tprod_isEmpty [IsEmpty C] (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e)
|
||
(f : (i : X) → 𝓣.ColorModule (cX i)) :
|
||
𝓣.contr e h (tprod R f) = tprod R (fun (p : P) => f (e (Sum.inr p))) := by
|
||
rw [contr_tprod]
|
||
rw [contrAll_tmul, contrAll'_isEmpty_tmul]
|
||
simp only [isEmptyEquiv_tprod, Equiv.refl_symm, mapIso_tprod, Equiv.refl_apply, one_mul]
|
||
erw [isEmptyEquiv_tprod]
|
||
simp
|
||
|
||
/-- The contraction of indices via `contr` is equivariant. -/
|
||
@[simp]
|
||
lemma contr_equivariant (e : (C ⊕ C) ⊕ P ≃ X) (h : cX.ContrCond e)
|
||
(g : G) (x : 𝓣.Tensor cX) : 𝓣.contr e h (g • x) = g • 𝓣.contr e h x := by
|
||
simp only [TensorColor.ColorMap.contr, contr, TensorProduct.congr, LinearEquiv.refl_toLinearMap,
|
||
LinearEquiv.symm_symm, LinearEquiv.refl_symm, LinearEquiv.ofLinear_toLinearMap,
|
||
LinearEquiv.comp_coe, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
||
LinearEquiv.trans_apply, rep_mapIso_apply, rep_tensoratorEquiv_symm_apply]
|
||
rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp]
|
||
rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp]
|
||
rw [LinearMap.comp_assoc, rep_tensoratorEquiv_symm, ← LinearMap.comp_assoc]
|
||
simp only [contrAll_rep, LinearMap.comp_id, LinearMap.id_comp]
|
||
have h1 {M N A B : Type} [AddCommMonoid M] [AddCommMonoid N]
|
||
[AddCommMonoid A] [AddCommMonoid B] [Module R M] [Module R N] [Module R A] [Module R B]
|
||
(f : M →ₗ[R] N) (g : A →ₗ[R] B) : TensorProduct.map f g
|
||
= TensorProduct.map (LinearMap.id) g ∘ₗ TensorProduct.map f (LinearMap.id) :=
|
||
ext rfl
|
||
rw [h1]
|
||
simp only [LinearMap.coe_comp, Function.comp_apply, rep_lid_apply]
|
||
rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp]
|
||
rfl
|
||
|
||
end TensorStructure
|