149 lines
4.3 KiB
Text
149 lines
4.3 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzVector.Contraction
|
||
import HepLean.SpaceTime.LorentzVector.LorentzAction
|
||
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
|
||
/-!
|
||
|
||
# Real Lorentz tensors
|
||
|
||
-/
|
||
|
||
open TensorProduct
|
||
open minkowskiMatrix
|
||
|
||
namespace realTensorColor
|
||
|
||
variable {d : ℕ}
|
||
/-!
|
||
|
||
## Definitions and lemmas needed to define a `LorentzTensorStructure`
|
||
|
||
-/
|
||
|
||
/-- The type colors for real Lorentz tensors. -/
|
||
inductive ColorType
|
||
| up
|
||
| down
|
||
|
||
/-- An equivalence between `ColorType ≃ Fin 1 ⊕ Fin 1`. -/
|
||
def colorTypEquivFin1Fin1 : ColorType ≃ Fin 1 ⊕ Fin 1 where
|
||
toFun
|
||
| ColorType.up => Sum.inl ⟨0, Nat.zero_lt_one⟩
|
||
| ColorType.down => Sum.inr ⟨0, Nat.zero_lt_one⟩
|
||
invFun
|
||
| Sum.inl _ => ColorType.up
|
||
| Sum.inr _ => ColorType.down
|
||
left_inv := by
|
||
intro x
|
||
cases x
|
||
simp only
|
||
simp only
|
||
right_inv := by
|
||
intro x
|
||
cases x
|
||
simp only [Fin.zero_eta, Fin.isValue, Sum.inl.injEq]
|
||
rename_i f
|
||
exact (Fin.fin_one_eq_zero f).symm
|
||
simp only [Fin.zero_eta, Fin.isValue, Sum.inr.injEq]
|
||
rename_i f
|
||
exact (Fin.fin_one_eq_zero f).symm
|
||
|
||
instance : DecidableEq ColorType :=
|
||
Equiv.decidableEq colorTypEquivFin1Fin1
|
||
|
||
instance : Fintype ColorType where
|
||
elems := {ColorType.up, ColorType.down}
|
||
complete := by
|
||
intro x
|
||
cases x
|
||
simp only [Finset.mem_insert, Finset.mem_singleton, or_false]
|
||
simp only [Finset.mem_insert, Finset.mem_singleton, or_true]
|
||
|
||
end realTensorColor
|
||
|
||
noncomputable section
|
||
|
||
open realTensorColor
|
||
|
||
/-- The color structure for real lorentz tensors. -/
|
||
def realTensorColor : TensorColor where
|
||
Color := ColorType
|
||
τ μ :=
|
||
match μ with
|
||
| .up => .down
|
||
| .down => .up
|
||
τ_involutive μ :=
|
||
match μ with
|
||
| .up => rfl
|
||
| .down => rfl
|
||
|
||
instance : Fintype realTensorColor.Color := realTensorColor.instFintypeColorType
|
||
|
||
instance : DecidableEq realTensorColor.Color := realTensorColor.instDecidableEqColorType
|
||
|
||
/-! TODO: Set up the notation `𝓛𝓣ℝ` or similar. -/
|
||
/-- The `LorentzTensorStructure` associated with real Lorentz tensors. -/
|
||
def realLorentzTensor (d : ℕ) : TensorStructure ℝ where
|
||
toTensorColor := realTensorColor
|
||
ColorModule μ :=
|
||
match μ with
|
||
| .up => LorentzVector d
|
||
| .down => CovariantLorentzVector d
|
||
colorModule_addCommMonoid μ :=
|
||
match μ with
|
||
| .up => instAddCommMonoidLorentzVector d
|
||
| .down => instAddCommMonoidCovariantLorentzVector d
|
||
colorModule_module μ :=
|
||
match μ with
|
||
| .up => instModuleRealLorentzVector d
|
||
| .down => instModuleRealCovariantLorentzVector d
|
||
contrDual μ :=
|
||
match μ with
|
||
| .up => LorentzVector.contrUpDown
|
||
| .down => LorentzVector.contrDownUp
|
||
contrDual_symm μ :=
|
||
match μ with
|
||
| .up => by
|
||
intro x y
|
||
simp only [realTensorColor, LorentzVector.contrDownUp, Equiv.cast_refl, Equiv.refl_apply,
|
||
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, comm_tmul]
|
||
| .down => by
|
||
intro x y
|
||
simp only [realTensorColor, LorentzVector.contrDownUp, LinearMap.coe_comp,
|
||
LinearEquiv.coe_coe, Function.comp_apply, comm_tmul, Equiv.cast_refl, Equiv.refl_apply]
|
||
unit μ :=
|
||
match μ with
|
||
| .up => LorentzVector.unitUp
|
||
| .down => LorentzVector.unitDown
|
||
unit_rid μ :=
|
||
match μ with
|
||
| .up => LorentzVector.unitUp_rid
|
||
| .down => LorentzVector.unitDown_rid
|
||
metric μ :=
|
||
match μ with
|
||
| realTensorColor.ColorType.up => asTenProd
|
||
| realTensorColor.ColorType.down => asCoTenProd
|
||
metric_dual μ :=
|
||
match μ with
|
||
| realTensorColor.ColorType.up => asTenProd_contr_asCoTenProd
|
||
| realTensorColor.ColorType.down => asCoTenProd_contr_asTenProd
|
||
|
||
/-- The action of the Lorentz group on real Lorentz tensors. -/
|
||
instance : MulActionTensor (LorentzGroup d) (realLorentzTensor d) where
|
||
repColorModule μ :=
|
||
match μ with
|
||
| .up => LorentzVector.rep
|
||
| .down => CovariantLorentzVector.rep
|
||
contrDual_inv μ _ :=
|
||
match μ with
|
||
| .up => TensorProduct.ext' (fun _ _ => LorentzVector.contrUpDown_invariant_lorentzAction)
|
||
| .down => TensorProduct.ext' (fun _ _ => LorentzVector.contrDownUp_invariant_lorentzAction)
|
||
metric_inv μ g :=
|
||
match μ with
|
||
| .up => asTenProd_invariant g
|
||
| .down => asCoTenProd_invariant g
|
||
end
|