430 lines
16 KiB
Text
430 lines
16 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Logic.Function.CompTypeclasses
|
||
import Mathlib.Data.Real.Basic
|
||
import Mathlib.Data.Fintype.BigOperators
|
||
import Mathlib.Logic.Equiv.Fin
|
||
import Mathlib.Tactic.FinCases
|
||
import Mathlib.Logic.Equiv.Fintype
|
||
import Mathlib.Algebra.Module.Pi
|
||
import Mathlib.Algebra.Module.Equiv
|
||
import Mathlib.Algebra.Module.LinearMap.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basic
|
||
import Mathlib.LinearAlgebra.TensorProduct.Basis
|
||
import Mathlib.LinearAlgebra.PiTensorProduct
|
||
import Mathlib.RepresentationTheory.Basic
|
||
/-!
|
||
|
||
# Structure of Lorentz Tensors
|
||
|
||
In this file we set up the basic structures we will use to define Lorentz tensors.
|
||
|
||
## References
|
||
|
||
-- For modular operads see: [Raynor][raynor2021graphical]
|
||
|
||
-/
|
||
|
||
noncomputable section
|
||
|
||
open TensorProduct
|
||
|
||
variable {R : Type} [CommSemiring R]
|
||
|
||
structure PreTensorStructure (R : Type) [CommSemiring R] where
|
||
Color : Type
|
||
ColorModule : Color → Type
|
||
τ : Color → Color
|
||
τ_involutive : Function.Involutive τ
|
||
colorModule_addCommMonoid : ∀ μ, AddCommMonoid (ColorModule μ)
|
||
colorModule_module : ∀ μ, Module R (ColorModule μ)
|
||
contrDual : ∀ μ, ColorModule μ ⊗[R] ColorModule (τ μ) →ₗ[R] R
|
||
|
||
namespace PreTensorStructure
|
||
|
||
|
||
variable (𝓣 : PreTensorStructure R)
|
||
|
||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||
|
||
instance : AddCommMonoid (𝓣.ColorModule μ) := 𝓣.colorModule_addCommMonoid μ
|
||
|
||
instance : Module R (𝓣.ColorModule μ) := 𝓣.colorModule_module μ
|
||
|
||
def Tensor (c : X → 𝓣.Color): Type := ⨂[R] x, 𝓣.ColorModule (c x)
|
||
|
||
instance : AddCommMonoid (𝓣.Tensor c) :=
|
||
PiTensorProduct.instAddCommMonoid fun i => 𝓣.ColorModule (c i)
|
||
|
||
instance : Module R (𝓣.Tensor c) := PiTensorProduct.instModule
|
||
|
||
def colorModuleCast (h : μ = ν) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorModule ν where
|
||
toFun x := Equiv.cast (congrArg 𝓣.ColorModule h) x
|
||
invFun x := (Equiv.cast (congrArg 𝓣.ColorModule h)).symm x
|
||
map_add' x y := by
|
||
subst h
|
||
rfl
|
||
map_smul' x y := by
|
||
subst h
|
||
rfl
|
||
left_inv x := by
|
||
subst h
|
||
rfl
|
||
right_inv x := by
|
||
subst h
|
||
rfl
|
||
|
||
/-!
|
||
|
||
## Mapping isomorphisms
|
||
|
||
-/
|
||
|
||
def mapIso {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) :
|
||
𝓣.Tensor c ≃ₗ[R] 𝓣.Tensor d :=
|
||
(PiTensorProduct.reindex R _ e) ≪≫ₗ
|
||
(PiTensorProduct.congr (fun y => 𝓣.colorModuleCast (by rw [h]; simp)))
|
||
|
||
lemma mapIso_trans_cond {e : X ≃ Y} {e' : Y ≃ Z} (h : c = d ∘ e) (h' : d = b ∘ e') :
|
||
c = b ∘ (e.trans e') := by
|
||
funext a
|
||
subst h h'
|
||
simp
|
||
|
||
@[simp]
|
||
lemma mapIso_trans (e : X ≃ Y) (e' : Y ≃ Z) (h : c = d ∘ e) (h' : d = b ∘ e') :
|
||
(𝓣.mapIso e h ≪≫ₗ 𝓣.mapIso e' h') = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') := by
|
||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp only [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
|
||
LinearEquiv.trans_apply, PiTensorProduct.reindex_tprod, Equiv.symm_trans_apply]
|
||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast (_))
|
||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (d x)) e')
|
||
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast (_)) _)) =
|
||
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (c x)) (e.trans e')) _)
|
||
rw [PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod,
|
||
PiTensorProduct.congr_tprod, PiTensorProduct.reindex_tprod, PiTensorProduct.congr]
|
||
simp [colorModuleCast]
|
||
|
||
@[simp]
|
||
lemma mapIso_mapIso (e : X ≃ Y) (e' : Y ≃ Z) (h : c = d ∘ e) (h' : d = b ∘ e')
|
||
(T : 𝓣.Tensor c) :
|
||
(𝓣.mapIso e' h') (𝓣.mapIso e h T) = 𝓣.mapIso (e.trans e') (𝓣.mapIso_trans_cond h h') T := by
|
||
rw [← LinearEquiv.trans_apply, mapIso_trans]
|
||
|
||
@[simp]
|
||
lemma mapIso_symm (e : X ≃ Y) (h : c = d ∘ e) :
|
||
(𝓣.mapIso e h).symm = 𝓣.mapIso e.symm ((Equiv.eq_comp_symm e d c).mpr h.symm) := by
|
||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp [mapIso, LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe,
|
||
LinearEquiv.symm_apply_apply, PiTensorProduct.reindex_tprod]
|
||
change (PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (c x)) e).symm
|
||
((PiTensorProduct.congr fun y => 𝓣.colorModuleCast _).symm ((PiTensorProduct.tprod R) x)) =
|
||
(PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (d x)) e.symm) ((PiTensorProduct.tprod R) x))
|
||
rw [PiTensorProduct.reindex_tprod, PiTensorProduct.congr_tprod, PiTensorProduct.congr_symm_tprod,
|
||
LinearEquiv.symm_apply_eq, PiTensorProduct.reindex_tprod]
|
||
apply congrArg
|
||
funext i
|
||
simp only [colorModuleCast, Equiv.cast_symm, LinearEquiv.coe_symm_mk,
|
||
Equiv.symm_symm_apply, LinearEquiv.coe_mk]
|
||
rw [← Equiv.symm_apply_eq]
|
||
simp only [Equiv.cast_symm, Equiv.cast_apply, cast_cast]
|
||
apply cast_eq_iff_heq.mpr
|
||
rw [Equiv.apply_symm_apply]
|
||
|
||
@[simp]
|
||
lemma mapIso_refl : 𝓣.mapIso (Equiv.refl X) (rfl : c = c) = LinearEquiv.refl R _ := by
|
||
refine LinearEquiv.toLinearMap_inj.mp ?_
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp only [mapIso, Equiv.refl_symm, Equiv.refl_apply, PiTensorProduct.reindex_refl,
|
||
LinearMap.compMultilinearMap_apply, LinearEquiv.coe_coe, LinearEquiv.trans_apply,
|
||
LinearEquiv.refl_apply, LinearEquiv.refl_toLinearMap, LinearMap.id, LinearMap.coe_mk,
|
||
AddHom.coe_mk, id_eq]
|
||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _) ((PiTensorProduct.tprod R) x) = _
|
||
rw [PiTensorProduct.congr_tprod]
|
||
rfl
|
||
|
||
@[simp]
|
||
lemma mapIso_tprod {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = d ∘ e) (f : (i : X) → 𝓣.ColorModule (c i)) :
|
||
(𝓣.mapIso e h) (PiTensorProduct.tprod R f) =
|
||
(PiTensorProduct.tprod R (fun i => 𝓣.colorModuleCast (by rw [h]; simp) (f (e.symm i)))) := by
|
||
simp [mapIso]
|
||
change (PiTensorProduct.congr fun y => 𝓣.colorModuleCast _)
|
||
((PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (c x)) e) ((PiTensorProduct.tprod R) f)) = _
|
||
rw [PiTensorProduct.reindex_tprod]
|
||
simp only [PiTensorProduct.congr_tprod]
|
||
|
||
/-!
|
||
|
||
## Contraction
|
||
|
||
-/
|
||
|
||
def pairProd : 𝓣.Tensor c ⊗[R] 𝓣.Tensor c₂ →ₗ[R]
|
||
⨂[R] x, 𝓣.ColorModule (c x) ⊗[R] 𝓣.ColorModule (c₂ x) :=
|
||
TensorProduct.lift (
|
||
PiTensorProduct.map₂ (fun x =>
|
||
TensorProduct.mk R (𝓣.ColorModule (c x)) (𝓣.ColorModule (c₂ x)) ))
|
||
|
||
lemma mkPiAlgebra_equiv (e : X ≃ Y) :
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) =
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R Y R)) ∘ₗ
|
||
(PiTensorProduct.reindex R _ e).toLinearMap := by
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp only [LinearMap.compMultilinearMap_apply, PiTensorProduct.lift.tprod,
|
||
MultilinearMap.mkPiAlgebra_apply, LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply,
|
||
PiTensorProduct.reindex_tprod, Equiv.prod_comp]
|
||
|
||
|
||
def contrAll' : 𝓣.Tensor c ⊗[R] 𝓣.Tensor (𝓣.τ ∘ c) →ₗ[R] R :=
|
||
(PiTensorProduct.lift (MultilinearMap.mkPiAlgebra R X R)) ∘ₗ
|
||
(PiTensorProduct.map (fun x => 𝓣.contrDual (c x))) ∘ₗ
|
||
(𝓣.pairProd)
|
||
|
||
lemma contrAll'_mapIso_cond {e : X ≃ Y} (h : c = d ∘ e) :
|
||
𝓣.τ ∘ d = (𝓣.τ ∘ c) ∘ ⇑e.symm := by
|
||
subst h
|
||
ext1 x
|
||
simp
|
||
|
||
@[simp]
|
||
lemma contrAll'_mapIso (e : X ≃ Y) (h : c = d ∘ e) :
|
||
𝓣.contrAll' ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap =
|
||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl R _)
|
||
(𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h))).toLinearMap := by
|
||
apply TensorProduct.ext'
|
||
refine fun x ↦
|
||
PiTensorProduct.induction_on' x ?_ (by
|
||
intro a b hx hy y
|
||
simp [map_add, add_tmul, hx, hy])
|
||
intro rx fx
|
||
refine fun y ↦
|
||
PiTensorProduct.induction_on' y ?_ (by
|
||
intro a b hx hy
|
||
simp at hx hy
|
||
simp [map_add, tmul_add, hx, hy])
|
||
intro ry fy
|
||
simp [contrAll']
|
||
rw [mkPiAlgebra_equiv e]
|
||
apply congrArg
|
||
simp
|
||
apply congrArg
|
||
rw [← LinearEquiv.symm_apply_eq]
|
||
rw [PiTensorProduct.reindex_symm]
|
||
rw [← PiTensorProduct.map_reindex]
|
||
subst h
|
||
simp
|
||
apply congrArg
|
||
rw [pairProd, pairProd]
|
||
simp
|
||
apply congrArg
|
||
change _ = ((PiTensorProduct.map₂ fun x => TensorProduct.mk R (𝓣.ColorModule (d (e x))) (𝓣.ColorModule (𝓣.τ (d (e x)))))
|
||
((PiTensorProduct.tprod R) fx))
|
||
((𝓣.mapIso e.symm _) ((PiTensorProduct.tprod R) fy))
|
||
rw [mapIso_tprod]
|
||
simp
|
||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||
change (PiTensorProduct.reindex R (fun x => 𝓣.ColorModule (d x) ⊗[R] 𝓣.ColorModule (𝓣.τ (d x))) e.symm)
|
||
(((PiTensorProduct.map₂ fun x => TensorProduct.mk R (𝓣.ColorModule (d x)) (𝓣.ColorModule (𝓣.τ (d x))))
|
||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (fx (e.symm i))))
|
||
((PiTensorProduct.tprod R) fy)) = _
|
||
rw [PiTensorProduct.map₂_tprod_tprod]
|
||
simp
|
||
erw [PiTensorProduct.reindex_tprod]
|
||
apply congrArg
|
||
funext i
|
||
simp
|
||
congr
|
||
simp [colorModuleCast]
|
||
apply cast_eq_iff_heq.mpr
|
||
rw [Equiv.symm_apply_apply]
|
||
|
||
@[simp]
|
||
lemma contrAll'_mapIso_tmul (e : X ≃ Y) (h : c = d ∘ e) (x : 𝓣.Tensor c) (y : 𝓣.Tensor (𝓣.τ ∘ d)) :
|
||
𝓣.contrAll' ((𝓣.mapIso e h) x ⊗ₜ[R] y) = 𝓣.contrAll' (x ⊗ₜ[R] (𝓣.mapIso e.symm (𝓣.contrAll'_mapIso_cond h) y)) := by
|
||
change (𝓣.contrAll' ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e h) (LinearEquiv.refl R _)).toLinearMap) (x ⊗ₜ[R] y) = _
|
||
rw [contrAll'_mapIso]
|
||
rfl
|
||
|
||
def contrAll {c : X → 𝓣.Color} {d : Y → 𝓣.Color}
|
||
(e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e) : 𝓣.Tensor c ⊗[R] 𝓣.Tensor d →ₗ[R] R :=
|
||
𝓣.contrAll' ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
|
||
(𝓣.mapIso e.symm (by subst h; funext a; simp; rw [𝓣.τ_involutive]))).toLinearMap
|
||
|
||
lemma contrAll_symm_cond {e : X ≃ Y} (h : c = 𝓣.τ ∘ d ∘ e) :
|
||
d = 𝓣.τ ∘ c ∘ ⇑e.symm := by
|
||
subst h
|
||
ext1 x
|
||
simp
|
||
rw [𝓣.τ_involutive]
|
||
|
||
lemma contrAll_mapIso_right_cond {e : X ≃ Y} {e' : Z ≃ Y}
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') : c = 𝓣.τ ∘ b ∘ ⇑(e.trans e'.symm) := by
|
||
subst h h'
|
||
ext1 x
|
||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_right_tmul (e : X ≃ Y) (e' : Z ≃ Y)
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') (x : 𝓣.Tensor c) (z : 𝓣.Tensor b) :
|
||
𝓣.contrAll e h (x ⊗ₜ[R] (𝓣.mapIso e' h' z)) =
|
||
𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') (x ⊗ₜ[R] z) := by
|
||
rw [contrAll, contrAll]
|
||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
|
||
LinearEquiv.refl_apply, mapIso_mapIso]
|
||
congr
|
||
|
||
@[simp]
|
||
lemma contrAll_comp_mapIso_right (e : X ≃ Y) (e' : Z ≃ Y)
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = d ∘ e') : 𝓣.contrAll e h ∘ₗ
|
||
(TensorProduct.congr (LinearEquiv.refl R (𝓣.Tensor c)) (𝓣.mapIso e' h')).toLinearMap
|
||
= 𝓣.contrAll (e.trans e'.symm) (𝓣.contrAll_mapIso_right_cond h h') := by
|
||
apply TensorProduct.ext'
|
||
intro x y
|
||
exact 𝓣.contrAll_mapIso_right_tmul e e' h h' x y
|
||
|
||
lemma contrAll_mapIso_left_cond {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = c ∘ e') : b = 𝓣.τ ∘ d ∘ ⇑(e'.trans e) := by
|
||
subst h h'
|
||
ext1 x
|
||
simp only [Function.comp_apply, Equiv.coe_trans, Equiv.apply_symm_apply]
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_left_tmul {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = c ∘ e') (x : 𝓣.Tensor b) (y : 𝓣.Tensor d) :
|
||
𝓣.contrAll e h ((𝓣.mapIso e' h' x) ⊗ₜ[R] y) =
|
||
𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') (x ⊗ₜ[R] y) := by
|
||
rw [contrAll, contrAll]
|
||
simp only [LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, congr_tmul,
|
||
LinearEquiv.refl_apply, contrAll'_mapIso_tmul, mapIso_mapIso]
|
||
congr
|
||
|
||
@[simp]
|
||
lemma contrAll_mapIso_left {e : X ≃ Y} {e' : Z ≃ X}
|
||
(h : c = 𝓣.τ ∘ d ∘ e) (h' : b = c ∘ e') :
|
||
𝓣.contrAll e h ∘ₗ
|
||
(TensorProduct.congr (𝓣.mapIso e' h') (LinearEquiv.refl R (𝓣.Tensor d))).toLinearMap
|
||
= 𝓣.contrAll (e'.trans e) (𝓣.contrAll_mapIso_left_cond h h') := by
|
||
apply TensorProduct.ext'
|
||
intro x y
|
||
exact 𝓣.contrAll_mapIso_left_tmul h h' x y
|
||
|
||
end PreTensorStructure
|
||
|
||
structure TensorStructure (R : Type) [CommSemiring R] extends PreTensorStructure R where
|
||
contrDual_symm : ∀ μ,
|
||
(contrDual μ) ∘ₗ (TensorProduct.comm R (ColorModule (τ μ)) (ColorModule μ)).toLinearMap =
|
||
(contrDual (τ μ)) ∘ₗ (TensorProduct.congr (LinearEquiv.refl _ _)
|
||
(toPreTensorStructure.colorModuleCast (by rw[toPreTensorStructure.τ_involutive]))).toLinearMap
|
||
|
||
namespace TensorStructure
|
||
|
||
open PreTensorStructure
|
||
|
||
variable (𝓣 : TensorStructure R)
|
||
|
||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||
|
||
|
||
end TensorStructure
|
||
|
||
structure GroupTensorStructure (R : Type) [CommSemiring R]
|
||
(G : Type) [Group G] extends TensorStructure R where
|
||
repColorModule : (μ : Color) → Representation R G (ColorModule μ)
|
||
contrDual_inv : ∀ μ g, contrDual μ ∘ₗ
|
||
TensorProduct.map (repColorModule μ g) (repColorModule (τ μ) g) = contrDual μ
|
||
|
||
namespace GroupTensorStructure
|
||
open TensorStructure
|
||
open PreTensorStructure
|
||
|
||
variable {G : Type} [Group G]
|
||
|
||
variable (𝓣 : GroupTensorStructure R G)
|
||
|
||
variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [DecidableEq Y]
|
||
[Fintype Y'] [DecidableEq Y'] [Fintype Z] [DecidableEq Z]
|
||
{c c₂ : X → 𝓣.Color} {d : Y → 𝓣.Color} {b : Z → 𝓣.Color} {d' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||
|
||
|
||
def rep : Representation R G (𝓣.Tensor c) where
|
||
toFun g := PiTensorProduct.map (fun x => 𝓣.repColorModule (c x) g)
|
||
map_one' := by
|
||
simp_all only [_root_.map_one, PiTensorProduct.map_one]
|
||
map_mul' g g' := by
|
||
simp_all only [_root_.map_mul]
|
||
exact PiTensorProduct.map_mul _ _
|
||
|
||
local infixl:78 " • " => 𝓣.rep
|
||
|
||
@[simp]
|
||
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||
(𝓣.repColorModule ν g) ((𝓣.colorModuleCast h) x) = (𝓣.colorModuleCast h) ((𝓣.repColorModule μ g) x) := by
|
||
subst h
|
||
simp [colorModuleCast]
|
||
|
||
@[simp]
|
||
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
|
||
(𝓣.repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
|
||
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (𝓣.repColorModule μ g) := by
|
||
apply LinearMap.ext
|
||
intro x
|
||
simp
|
||
|
||
|
||
@[simp]
|
||
lemma rep_mapIso (e : X ≃ Y) (h : c = d ∘ e) (g : G) :
|
||
(𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap = (𝓣.mapIso e h).toLinearMap ∘ₗ 𝓣.rep g := by
|
||
apply PiTensorProduct.ext
|
||
apply MultilinearMap.ext
|
||
intro x
|
||
simp
|
||
erw [mapIso_tprod]
|
||
simp [rep]
|
||
change (PiTensorProduct.map fun x => (𝓣.repColorModule (d x)) g)
|
||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
|
||
(𝓣.mapIso e h) ((PiTensorProduct.map fun x => (𝓣.repColorModule (c x)) g) ((PiTensorProduct.tprod R) x))
|
||
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
|
||
rw [mapIso_tprod]
|
||
apply congrArg
|
||
funext i
|
||
subst h
|
||
simp
|
||
|
||
@[simp]
|
||
lemma rep_mapIso_apply (e : X ≃ Y) (h : c = d ∘ e) (g : G) (x : 𝓣.Tensor c) :
|
||
(𝓣.rep g) ((𝓣.mapIso e h) x) = (𝓣.mapIso e h) ((𝓣.rep g) x) := by
|
||
trans ((𝓣.rep g) ∘ₗ (𝓣.mapIso e h).toLinearMap) x
|
||
rfl
|
||
simp
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
end GroupTensorStructure
|
||
|
||
|
||
end
|