132 lines
5.8 KiB
Text
132 lines
5.8 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzVector.Complex.Two
|
||
import HepLean.SpaceTime.MinkowskiMetric
|
||
/-!
|
||
|
||
# Metric for complex Lorentz vectors
|
||
|
||
-/
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open MatrixGroups
|
||
open Complex
|
||
open TensorProduct
|
||
open SpaceTime
|
||
open CategoryTheory.MonoidalCategory
|
||
namespace Lorentz
|
||
|
||
/-- The metric `ηᵃᵃ` as an element of `(complexContr ⊗ complexContr).V`. -/
|
||
def contrMetricVal : (complexContr ⊗ complexContr).V :=
|
||
contrContrToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
|
||
|
||
/-- The expansion of `contrMetricVal` into basis vectors. -/
|
||
lemma contrMetricVal_expand_tmul : contrMetricVal =
|
||
complexContrBasis (Sum.inl 0) ⊗ₜ[ℂ] complexContrBasis (Sum.inl 0)
|
||
- complexContrBasis (Sum.inr 0) ⊗ₜ[ℂ] complexContrBasis (Sum.inr 0)
|
||
- complexContrBasis (Sum.inr 1) ⊗ₜ[ℂ] complexContrBasis (Sum.inr 1)
|
||
- complexContrBasis (Sum.inr 2) ⊗ₜ[ℂ] complexContrBasis (Sum.inr 2) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal, Fin.isValue]
|
||
erw [contrContrToMatrix_symm_expand_tmul]
|
||
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
|
||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
|
||
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
|
||
zero_ne_one, Fin.reduceEq, one_ne_zero]
|
||
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
|
||
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
|
||
simp only [Fin.isValue, one_smul, neg_smul]
|
||
rfl
|
||
|
||
/-- The metric `ηᵃᵃ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexContr`,
|
||
making its invariance under the action of `SL(2,ℂ)`. -/
|
||
def contrMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexContr ⊗ complexContr where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • contrMetricVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul],
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • contrMetricVal =
|
||
(TensorProduct.map (complexContr.ρ M) (complexContr.ρ M)) (x' • contrMetricVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, contrMetricVal]
|
||
erw [contrContrToMatrix_ρ_symm]
|
||
apply congrArg
|
||
simp only [LorentzGroup.toComplex_mul_minkowskiMatrix_mul_transpose]
|
||
|
||
lemma contrMetric_apply_one : contrMetric.hom (1 : ℂ) = contrMetricVal := by
|
||
change contrMetric.hom.toFun (1 : ℂ) = contrMetricVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
contrMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
/-- The metric `ηᵢᵢ` as an element of `(complexCo ⊗ complexCo).V`. -/
|
||
def coMetricVal : (complexCo ⊗ complexCo).V :=
|
||
coCoToMatrix.symm ((@minkowskiMatrix 3).map ofReal)
|
||
|
||
/-- The expansion of `coMetricVal` into basis vectors. -/
|
||
lemma coMetricVal_expand_tmul : coMetricVal =
|
||
complexCoBasis (Sum.inl 0) ⊗ₜ[ℂ] complexCoBasis (Sum.inl 0)
|
||
- complexCoBasis (Sum.inr 0) ⊗ₜ[ℂ] complexCoBasis (Sum.inr 0)
|
||
- complexCoBasis (Sum.inr 1) ⊗ₜ[ℂ] complexCoBasis (Sum.inr 1)
|
||
- complexCoBasis (Sum.inr 2) ⊗ₜ[ℂ] complexCoBasis (Sum.inr 2) := by
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal, Fin.isValue]
|
||
erw [coCoToMatrix_symm_expand_tmul]
|
||
simp only [map_apply, ofReal_eq_coe, coe_smul, Fintype.sum_sum_type, Finset.univ_unique,
|
||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three, ne_eq, reduceCtorEq,
|
||
not_false_eq_true, minkowskiMatrix.off_diag_zero, zero_smul, add_zero, zero_add, Sum.inr.injEq,
|
||
zero_ne_one, Fin.reduceEq, one_ne_zero]
|
||
rw [minkowskiMatrix.inl_0_inl_0, minkowskiMatrix.inr_i_inr_i,
|
||
minkowskiMatrix.inr_i_inr_i, minkowskiMatrix.inr_i_inr_i]
|
||
simp only [Fin.isValue, one_smul, neg_smul]
|
||
rfl
|
||
|
||
/-- The metric `ηᵢᵢ` as a morphism `𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexCo`,
|
||
making its invariance under the action of `SL(2,ℂ)`. -/
|
||
def coMetric : 𝟙_ (Rep ℂ SL(2,ℂ)) ⟶ complexCo ⊗ complexCo where
|
||
hom := {
|
||
toFun := fun a =>
|
||
let a' : ℂ := a
|
||
a' • coMetricVal,
|
||
map_add' := fun x y => by
|
||
simp only [add_smul],
|
||
map_smul' := fun m x => by
|
||
simp only [smul_smul]
|
||
rfl}
|
||
comm M := by
|
||
ext x : 2
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
Action.tensorUnit_ρ', CategoryTheory.Category.id_comp, Action.tensor_ρ', ModuleCat.coe_comp,
|
||
Function.comp_apply]
|
||
let x' : ℂ := x
|
||
change x' • coMetricVal =
|
||
(TensorProduct.map (complexCo.ρ M) (complexCo.ρ M)) (x' • coMetricVal)
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
|
||
apply congrArg
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, coMetricVal]
|
||
erw [coCoToMatrix_ρ_symm]
|
||
apply congrArg
|
||
rw [LorentzGroup.toComplex_inv]
|
||
simp only [lorentzGroupIsGroup_inv, SL2C.toLorentzGroup_apply_coe,
|
||
LorentzGroup.toComplex_transpose_mul_minkowskiMatrix_mul_self]
|
||
|
||
lemma coMetric_apply_one : coMetric.hom (1 : ℂ) = coMetricVal := by
|
||
change coMetric.hom.toFun (1 : ℂ) = coMetricVal
|
||
simp only [Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
|
||
coMetric, AddHom.toFun_eq_coe, AddHom.coe_mk, one_smul]
|
||
|
||
end Lorentz
|
||
end
|