PhysLean/HepLean/Tensors/ComplexLorentz/Basis.lean
2024-10-23 05:56:00 +00:00

105 lines
3.6 KiB
Text
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.ComplexLorentz.Basic
import Mathlib.LinearAlgebra.TensorProduct.Basis
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.PermProd
import HepLean.Tensors.Tree.NodeIdentities.PermContr
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
import HepLean.Tensors.Tree.NodeIdentities.ContrContr
/-!
## Basis vectors associated with complex Lorentz tensors
Note that this file will be much improved once:
https://github.com/leanprover-community/mathlib4/pull/11156
is merged.
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open IndexNotation
open CategoryTheory
open TensorTree
open OverColor.Discrete
noncomputable section
namespace Fermion
namespace complexLorentzTensor
/-- Basis vectors for complex Lorentz tensors. -/
def basisVector {n : } (c : Fin n → complexLorentzTensor.C)
(b : Π j, Fin (complexLorentzTensor.repDim (c j))) :
complexLorentzTensor.F.obj (OverColor.mk c) :=
PiTensorProduct.tprod (fun i => complexLorentzTensor.basis (c i) (b i))
/-!
## Useful expansions.
-/
/-- The expansion of the Lorentz covariant metric in terms of basis vectors. -/
lemma coMetric_basis_expand : {Lorentz.coMetric | μ ν}ᵀ.tensor =
basisVector ![Color.down, Color.down] (fun _ => 0)
- basisVector ![Color.down, Color.down] (fun _ => 1)
- basisVector ![Color.down, Color.down] (fun _ => 2)
- basisVector ![Color.down, Color.down] (fun _ => 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.coMetric_apply_one, Lorentz.coMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexCoBasisFin4 _
simp only [Fin.isValue, Lorentz.complexCoBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
/-- The expansion of the Lorentz contrvariant metric in terms of basis vectors. -/
lemma contrMatrix_basis_expand : {Lorentz.contrMetric | μ ν}ᵀ.tensor =
basisVector ![Color.up, Color.up] (fun _ => 0)
- basisVector ![Color.up, Color.up] (fun _ => 1)
- basisVector ![Color.up, Color.up] (fun _ => 2)
- basisVector ![Color.up, Color.up] (fun _ => 3) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, constTwoNode_tensor,
Action.instMonoidalCategory_tensorObj_V, Action.instMonoidalCategory_tensorUnit_V,
Functor.id_obj, Fin.isValue]
erw [Lorentz.contrMetric_apply_one, Lorentz.contrMetricVal_expand_tmul]
simp only [Fin.isValue, map_sub]
congr 1
congr 1
congr 1
all_goals
erw [pairIsoSep_tmul, basisVector]
apply congrArg
funext i
fin_cases i
all_goals
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.zero_eta, Fin.isValue, OverColor.mk_hom,
cons_val_zero, Fin.cases_zero]
change _ = Lorentz.complexContrBasisFin4 _
simp only [Fin.isValue, Lorentz.complexContrBasisFin4, Basis.coe_reindex, Function.comp_apply]
rfl
end complexLorentzTensor
end Fermion
end