753 lines
32 KiB
Text
753 lines
32 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import Mathlib.Logic.Equiv.Fin
|
||
import Mathlib.Tactic.FinCases
|
||
import Mathlib.Data.Finset.Card
|
||
import Mathlib.CategoryTheory.IsomorphismClasses
|
||
import Mathlib.CategoryTheory.Functor.Category
|
||
import Mathlib.CategoryTheory.Comma.Over
|
||
import Mathlib.Data.Fintype.Pi
|
||
import Mathlib.CategoryTheory.Limits.Shapes.Terminal
|
||
import Mathlib.Data.Fintype.Prod
|
||
import Mathlib.Data.Fintype.Perm
|
||
import Mathlib.Combinatorics.SimpleGraph.Basic
|
||
import Mathlib.Combinatorics.SimpleGraph.Connectivity
|
||
import Mathlib.SetTheory.Cardinal.Basic
|
||
/-!
|
||
# Feynman diagrams
|
||
|
||
Feynman diagrams are a graphical representation of the terms in the perturbation expansion of
|
||
a quantum field theory.
|
||
|
||
-/
|
||
|
||
open CategoryTheory
|
||
/-!
|
||
|
||
## The definition of Pre Feynman rules
|
||
|
||
We define the notion of a pre-Feynman rule, which specifies the possible
|
||
half-edges, edges and vertices in a diagram. It does not specify how to turn a diagram
|
||
into an algebraic expression.
|
||
|
||
## TODO
|
||
Prove that the `halfEdgeLimit` functor lands on limits of functors.
|
||
|
||
-/
|
||
|
||
/-- A `PreFeynmanRule` is a set of rules specifying the allowed half-edges,
|
||
edges and vertices in a diagram. (It does not specify how to turn the diagram
|
||
into an algebraic expression.) -/
|
||
structure PreFeynmanRule where
|
||
/-- The type labelling the different half-edges. -/
|
||
HalfEdgeLabel : Type
|
||
/-- A type labelling the different types of edges. -/
|
||
EdgeLabel : Type
|
||
/-- A type labelling the different types of vertices. -/
|
||
VertexLabel : Type
|
||
/-- A function taking `EdgeLabels` to the half edges it contains. -/
|
||
edgeLabelMap : EdgeLabel → CategoryTheory.Over HalfEdgeLabel
|
||
/-- A function taking `VertexLabels` to the half edges it contains. -/
|
||
vertexLabelMap : VertexLabel → CategoryTheory.Over HalfEdgeLabel
|
||
|
||
namespace PreFeynmanRule
|
||
|
||
variable (P : PreFeynmanRule)
|
||
|
||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||
to `Over (P.VertexLabel)` induced by projections on products. -/
|
||
@[simps!]
|
||
def toVertex {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over 𝓥 :=
|
||
Over.map <| Prod.snd ∘ Prod.snd
|
||
|
||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||
to `Over (P.EdgeLabel)` induced by projections on products. -/
|
||
@[simps!]
|
||
def toEdge {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over 𝓔 :=
|
||
Over.map <| Prod.fst ∘ Prod.snd
|
||
|
||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)`
|
||
to `Over (P.HalfEdgeLabel)` induced by projections on products. -/
|
||
@[simps!]
|
||
def toHalfEdge {𝓔 𝓥 : Type} : Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel :=
|
||
Over.map Prod.fst
|
||
|
||
/-- The functor from `Over P.VertexLabel` to `Type` induced by pull-back along insertion of
|
||
`v : P.VertexLabel`. -/
|
||
@[simps!]
|
||
def preimageType' {𝓥 : Type} (v : 𝓥) : Over 𝓥 ⥤ Type where
|
||
obj := fun f => f.hom ⁻¹' {v}
|
||
map {f g} F := fun x =>
|
||
⟨F.left x.1, by
|
||
have h := congrFun F.w x
|
||
simp only [Functor.const_obj_obj, Functor.id_obj, Functor.id_map, types_comp_apply,
|
||
CostructuredArrow.right_eq_id, Functor.const_obj_map, types_id_apply] at h
|
||
simpa [h] using x.2⟩
|
||
|
||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` to
|
||
`Over P.HalfEdgeLabel` induced by pull-back along insertion of `v : P.VertexLabel`. -/
|
||
def preimageVertex {𝓔 𝓥 : Type} (v : 𝓥) :
|
||
Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel where
|
||
obj f := Over.mk (fun x => Prod.fst (f.hom x.1) :
|
||
(P.toVertex ⋙ preimageType' v).obj f ⟶ P.HalfEdgeLabel)
|
||
map {f g} F := Over.homMk ((P.toVertex ⋙ preimageType' v).map F)
|
||
(funext <| fun x => congrArg Prod.fst <| congrFun F.w x.1)
|
||
|
||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` to
|
||
`Over P.HalfEdgeLabel` induced by pull-back along insertion of `v : P.EdgeLabel`. -/
|
||
def preimageEdge {𝓔 𝓥 : Type} (v : 𝓔) :
|
||
Over (P.HalfEdgeLabel × 𝓔 × 𝓥) ⥤ Over P.HalfEdgeLabel where
|
||
obj f := Over.mk (fun x => Prod.fst (f.hom x.1) :
|
||
(P.toEdge ⋙ preimageType' v).obj f ⟶ P.HalfEdgeLabel)
|
||
map {f g} F := Over.homMk ((P.toEdge ⋙ preimageType' v).map F)
|
||
(funext <| fun x => congrArg Prod.fst <| congrFun F.w x.1)
|
||
|
||
/-!
|
||
|
||
## Finitness of pre-Feynman rules
|
||
|
||
We define a class of `PreFeynmanRule` which have nice properties with regard to
|
||
decidablity and finitness.
|
||
|
||
In practice, every pre-Feynman rule considered in the physics literature satisfies these
|
||
properties.
|
||
|
||
-/
|
||
|
||
/-- A set of conditions on `PreFeynmanRule` for it to be considered finite. -/
|
||
class IsFinitePreFeynmanRule (P : PreFeynmanRule) where
|
||
/-- The type of edge labels is decidable. -/
|
||
edgeLabelDecidable : DecidableEq P.EdgeLabel
|
||
/-- The type of vertex labels is decidable. -/
|
||
vertexLabelDecidable : DecidableEq P.VertexLabel
|
||
/-- The type of half-edge labels is decidable. -/
|
||
halfEdgeLabelDecidable : DecidableEq P.HalfEdgeLabel
|
||
/-- The type of half-edges associated with a vertex is finite. -/
|
||
vertexMapFintype : ∀ v : P.VertexLabel, Fintype (P.vertexLabelMap v).left
|
||
/-- The type of half-edges associated with a vertex is decidable. -/
|
||
vertexMapDecidable : ∀ v : P.VertexLabel, DecidableEq (P.vertexLabelMap v).left
|
||
/-- The type of half-edges associated with an edge is finite. -/
|
||
edgeMapFintype : ∀ v : P.EdgeLabel, Fintype (P.edgeLabelMap v).left
|
||
/-- The type of half-edges associated with an edge is decidable. -/
|
||
edgeMapDecidable : ∀ v : P.EdgeLabel, DecidableEq (P.edgeLabelMap v).left
|
||
|
||
instance preFeynmanRuleDecEq𝓔 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||
DecidableEq P.EdgeLabel :=
|
||
IsFinitePreFeynmanRule.edgeLabelDecidable
|
||
|
||
instance preFeynmanRuleDecEq𝓥 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||
DecidableEq P.VertexLabel :=
|
||
IsFinitePreFeynmanRule.vertexLabelDecidable
|
||
|
||
instance preFeynmanRuleDecEq𝓱𝓔 (P : PreFeynmanRule) [IsFinitePreFeynmanRule P] :
|
||
DecidableEq P.HalfEdgeLabel :=
|
||
IsFinitePreFeynmanRule.halfEdgeLabelDecidable
|
||
|
||
instance [IsFinitePreFeynmanRule P] (v : P.VertexLabel) : Fintype (P.vertexLabelMap v).left :=
|
||
IsFinitePreFeynmanRule.vertexMapFintype v
|
||
|
||
instance [IsFinitePreFeynmanRule P] (v : P.VertexLabel) : DecidableEq (P.vertexLabelMap v).left :=
|
||
IsFinitePreFeynmanRule.vertexMapDecidable v
|
||
|
||
instance [IsFinitePreFeynmanRule P] (v : P.EdgeLabel) : Fintype (P.edgeLabelMap v).left :=
|
||
IsFinitePreFeynmanRule.edgeMapFintype v
|
||
|
||
instance [IsFinitePreFeynmanRule P] (v : P.EdgeLabel) : DecidableEq (P.edgeLabelMap v).left :=
|
||
IsFinitePreFeynmanRule.edgeMapDecidable v
|
||
|
||
instance preimageVertexDecidablePred {𝓔 𝓥 : Type} [DecidableEq 𝓥] (v : 𝓥)
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) :
|
||
DecidablePred fun x => x ∈ (P.toVertex.obj F).hom ⁻¹' {v} := fun y =>
|
||
match decEq ((P.toVertex.obj F).hom y) v with
|
||
| isTrue h => isTrue h
|
||
| isFalse h => isFalse h
|
||
|
||
instance preimageEdgeDecidablePred {𝓔 𝓥 : Type} [DecidableEq 𝓔] (v : 𝓔)
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) :
|
||
DecidablePred fun x => x ∈ (P.toEdge.obj F).hom ⁻¹' {v} := fun y =>
|
||
match decEq ((P.toEdge.obj F).hom y) v with
|
||
| isTrue h => isTrue h
|
||
| isFalse h => isFalse h
|
||
|
||
instance preimageVertexDecidable {𝓔 𝓥 : Type} (v : 𝓥)
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] :
|
||
DecidableEq ((P.preimageVertex v).obj F).left := Subtype.instDecidableEq
|
||
|
||
instance preimageEdgeDecidable {𝓔 𝓥 : Type} (v : 𝓔)
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] :
|
||
DecidableEq ((P.preimageEdge v).obj F).left := Subtype.instDecidableEq
|
||
|
||
instance preimageVertexFintype {𝓔 𝓥 : Type} [DecidableEq 𝓥]
|
||
(v : 𝓥) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [h : Fintype F.left] :
|
||
Fintype ((P.preimageVertex v).obj F).left := @Subtype.fintype _ _ _ h
|
||
|
||
instance preimageEdgeFintype {𝓔 𝓥 : Type} [DecidableEq 𝓔]
|
||
(v : 𝓔) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [h : Fintype F.left] :
|
||
Fintype ((P.preimageEdge v).obj F).left := @Subtype.fintype _ _ _ h
|
||
|
||
instance preimageVertexMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
|
||
[DecidableEq 𝓥] (v : 𝓥) (f : 𝓥 ⟶ P.VertexLabel) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
[Fintype F.left] :
|
||
Fintype ((P.vertexLabelMap (f v)).left → ((P.preimageVertex v).obj F).left) :=
|
||
Pi.fintype
|
||
|
||
instance preimageEdgeMapFintype [IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type}
|
||
[DecidableEq 𝓔] (v : 𝓔) (f : 𝓔 ⟶ P.EdgeLabel) (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
[Fintype F.left] :
|
||
Fintype ((P.edgeLabelMap (f v)).left → ((P.preimageEdge v).obj F).left) :=
|
||
Pi.fintype
|
||
|
||
/-!
|
||
|
||
## External and internal Vertices
|
||
|
||
We say a vertex Label is `external` if it has only one half-edge associated with it.
|
||
Otherwise, we say it is `internal`.
|
||
|
||
We will show that for `IsFinitePreFeynmanRule` the condition of been external is decidable.
|
||
-/
|
||
|
||
/-- A vertex is external if it has a single half-edge associated to it. -/
|
||
def External {P : PreFeynmanRule} (v : P.VertexLabel) : Prop :=
|
||
IsIsomorphic (P.vertexLabelMap v).left (Fin 1)
|
||
|
||
lemma external_iff_exists_bijection {P : PreFeynmanRule} (v : P.VertexLabel) :
|
||
External v ↔ ∃ (κ : (P.vertexLabelMap v).left → Fin 1), Function.Bijective κ := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
obtain ⟨κ, κm1, h1, h2⟩ := h
|
||
let f : (P.vertexLabelMap v).left ≅ (Fin 1) := ⟨κ, κm1, h1, h2⟩
|
||
exact ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f⟩
|
||
obtain ⟨κ, h1⟩ := h
|
||
let f : (P.vertexLabelMap v).left ⟶ (Fin 1) := κ
|
||
have ft : IsIso f := (isIso_iff_bijective κ).mpr h1
|
||
obtain ⟨fm, hf1, hf2⟩ := ft
|
||
exact ⟨f, fm, hf1, hf2⟩
|
||
|
||
instance externalDecidable [IsFinitePreFeynmanRule P] (v : P.VertexLabel) :
|
||
Decidable (External v) :=
|
||
decidable_of_decidable_of_iff (external_iff_exists_bijection v).symm
|
||
|
||
/-!
|
||
|
||
## Conditions to form a diagram.
|
||
|
||
-/
|
||
|
||
/-- The proposition on vertices which must be satisfied by an object
|
||
`F : Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` for it to be a Feynman diagram.
|
||
This condition corresponds to the vertices of `F` having the correct half-edges associated
|
||
with them. -/
|
||
def DiagramVertexProp {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
(f : 𝓥 ⟶ P.VertexLabel) :=
|
||
∀ v, IsIsomorphic (P.vertexLabelMap (f v)) ((P.preimageVertex v).obj F)
|
||
|
||
/-- The proposition on edges which must be satisfied by an object
|
||
`F : Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` for it to be a Feynman diagram.
|
||
This condition corresponds to the edges of `F` having the correct half-edges associated
|
||
with them. -/
|
||
def DiagramEdgeProp {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
(f : 𝓔 ⟶ P.EdgeLabel) :=
|
||
∀ v, IsIsomorphic (P.edgeLabelMap (f v)) ((P.preimageEdge v).obj F)
|
||
|
||
lemma diagramVertexProp_iff {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
(f : 𝓥 ⟶ P.VertexLabel) : P.DiagramVertexProp F f ↔
|
||
∀ v, ∃ (κ : (P.vertexLabelMap (f v)).left → ((P.preimageVertex v).obj F).left),
|
||
Function.Bijective κ
|
||
∧ ((P.preimageVertex v).obj F).hom ∘ κ = (P.vertexLabelMap (f v)).hom := by
|
||
refine Iff.intro (fun h v => ?_) (fun h v => ?_)
|
||
obtain ⟨κ, κm1, h1, h2⟩ := h v
|
||
let f := (Over.forget P.HalfEdgeLabel).mapIso ⟨κ, κm1, h1, h2⟩
|
||
refine ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f, κ.w⟩
|
||
obtain ⟨κ, h1, h2⟩ := h v
|
||
let f : (P.vertexLabelMap (f v)) ⟶ ((P.preimageVertex v).obj F) := Over.homMk κ h2
|
||
have ft : IsIso ((Over.forget P.HalfEdgeLabel).map f) := (isIso_iff_bijective κ).mpr h1
|
||
obtain ⟨fm, hf1, hf2⟩ := (isIso_of_reflects_iso _ (Over.forget P.HalfEdgeLabel) : IsIso f)
|
||
exact ⟨f, fm, hf1, hf2⟩
|
||
|
||
lemma diagramEdgeProp_iff {𝓔 𝓥 : Type} (F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥))
|
||
(f : 𝓔 ⟶ P.EdgeLabel) : P.DiagramEdgeProp F f ↔
|
||
∀ v, ∃ (κ : (P.edgeLabelMap (f v)).left → ((P.preimageEdge v).obj F).left),
|
||
Function.Bijective κ
|
||
∧ ((P.preimageEdge v).obj F).hom ∘ κ = (P.edgeLabelMap (f v)).hom := by
|
||
refine Iff.intro (fun h v => ?_) (fun h v => ?_)
|
||
obtain ⟨κ, κm1, h1, h2⟩ := h v
|
||
let f := (Over.forget P.HalfEdgeLabel).mapIso ⟨κ, κm1, h1, h2⟩
|
||
refine ⟨f.hom, (isIso_iff_bijective f.hom).mp $ Iso.isIso_hom f, κ.w⟩
|
||
obtain ⟨κ, h1, h2⟩ := h v
|
||
let f : (P.edgeLabelMap (f v)) ⟶ ((P.preimageEdge v).obj F) := Over.homMk κ h2
|
||
have ft : IsIso ((Over.forget P.HalfEdgeLabel).map f) := (isIso_iff_bijective κ).mpr h1
|
||
obtain ⟨fm, hf1, hf2⟩ := (isIso_of_reflects_iso _ (Over.forget P.HalfEdgeLabel) : IsIso f)
|
||
exact ⟨f, fm, hf1, hf2⟩
|
||
|
||
instance diagramVertexPropDecidable
|
||
[IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type} [Fintype 𝓥] [DecidableEq 𝓥]
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] [Fintype F.left]
|
||
(f : 𝓥 ⟶ P.VertexLabel) : Decidable (P.DiagramVertexProp F f) :=
|
||
@decidable_of_decidable_of_iff _ _
|
||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||
(fun _ => @And.decidable _ _ _ (@Fintype.decidablePiFintype _ _
|
||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _ ) _)
|
||
(P.diagramVertexProp_iff F f).symm
|
||
|
||
instance diagramEdgePropDecidable
|
||
[IsFinitePreFeynmanRule P] {𝓔 𝓥 : Type} [Fintype 𝓔] [DecidableEq 𝓔]
|
||
(F : Over (P.HalfEdgeLabel × 𝓔 × 𝓥)) [DecidableEq F.left] [Fintype F.left]
|
||
(f : 𝓔 ⟶ P.EdgeLabel) : Decidable (P.DiagramEdgeProp F f) :=
|
||
@decidable_of_decidable_of_iff _ _
|
||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||
(fun _ => @And.decidable _ _ _ (@Fintype.decidablePiFintype _ _
|
||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _ ) _)
|
||
(P.diagramEdgeProp_iff F f).symm
|
||
|
||
end PreFeynmanRule
|
||
|
||
/-!
|
||
|
||
## The definition of Feynman diagrams
|
||
|
||
We now define the type of Feynman diagrams for a given pre-Feynman rule.
|
||
|
||
-/
|
||
|
||
open PreFeynmanRule
|
||
|
||
/-- The type of Feynman diagrams given a `PreFeynmanRule`. -/
|
||
structure FeynmanDiagram (P : PreFeynmanRule) where
|
||
/-- The type of edges in the Feynman diagram, labelled by their type. -/
|
||
𝓔𝓞 : Over P.EdgeLabel
|
||
/-- The type of vertices in the Feynman diagram, labelled by their type. -/
|
||
𝓥𝓞 : Over P.VertexLabel
|
||
/-- The type of half-edges in the Feynman diagram, labelled by their type, the edge it
|
||
belongs to, and the vertex they belong to. -/
|
||
𝓱𝓔To𝓔𝓥 : Over (P.HalfEdgeLabel × 𝓔𝓞.left × 𝓥𝓞.left)
|
||
/-- Each edge has the correct type of half edges. -/
|
||
𝓔Cond : P.DiagramEdgeProp 𝓱𝓔To𝓔𝓥 𝓔𝓞.hom
|
||
/-- Each vertex has the correct sort of half edges. -/
|
||
𝓥Cond : P.DiagramVertexProp 𝓱𝓔To𝓔𝓥 𝓥𝓞.hom
|
||
|
||
namespace FeynmanDiagram
|
||
|
||
variable {P : PreFeynmanRule} (F : FeynmanDiagram P)
|
||
|
||
/-- The type of edges. -/
|
||
def 𝓔 : Type := F.𝓔𝓞.left
|
||
|
||
/-- The type of vertices. -/
|
||
def 𝓥 : Type := F.𝓥𝓞.left
|
||
|
||
/-- The type of half-edges. -/
|
||
def 𝓱𝓔 : Type := F.𝓱𝓔To𝓔𝓥.left
|
||
|
||
/-- The object in Over P.HalfEdgeLabel generated by a Feynman diagram. -/
|
||
def 𝓱𝓔𝓞 : Over P.HalfEdgeLabel := P.toHalfEdge.obj F.𝓱𝓔To𝓔𝓥
|
||
|
||
/-- The map `F.𝓱𝓔 → F.𝓔` as an object in `Over F.𝓔 `. -/
|
||
def 𝓱𝓔To𝓔 : Over F.𝓔 := P.toEdge.obj F.𝓱𝓔To𝓔𝓥
|
||
|
||
/-- The map `F.𝓱𝓔 → F.𝓥` as an object in `Over F.𝓥 `. -/
|
||
def 𝓱𝓔To𝓥 : Over F.𝓥 := P.toVertex.obj F.𝓱𝓔To𝓔𝓥
|
||
|
||
/-!
|
||
|
||
## Making a Feynman diagram
|
||
|
||
-/
|
||
|
||
/-- The condition which must be satisfied by maps to form a Feynman diagram. -/
|
||
def Cond {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) : Prop :=
|
||
P.DiagramEdgeProp (Over.mk 𝓱𝓔To𝓔𝓥) 𝓔𝓞 ∧
|
||
P.DiagramVertexProp (Over.mk 𝓱𝓔To𝓔𝓥) 𝓥𝓞
|
||
|
||
lemma cond_self : Cond F.𝓔𝓞.hom F.𝓥𝓞.hom F.𝓱𝓔To𝓔𝓥.hom :=
|
||
⟨F.𝓔Cond, F.𝓥Cond⟩
|
||
|
||
/-- `Cond` is decidable. -/
|
||
instance CondDecidable [IsFinitePreFeynmanRule P] {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel)
|
||
(𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥)
|
||
[Fintype 𝓥] [DecidableEq 𝓥] [Fintype 𝓔] [DecidableEq 𝓔] [h : Fintype 𝓱𝓔] [DecidableEq 𝓱𝓔] :
|
||
Decidable (Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :=
|
||
@And.decidable _ _
|
||
(@diagramEdgePropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓔𝓞)
|
||
(@diagramVertexPropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓥𝓞)
|
||
|
||
/-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/
|
||
def mk' {𝓔 𝓥 𝓱𝓔 : Type} (𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥)
|
||
(C : Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥): FeynmanDiagram P where
|
||
𝓔𝓞 := Over.mk 𝓔𝓞
|
||
𝓥𝓞 := Over.mk 𝓥𝓞
|
||
𝓱𝓔To𝓔𝓥 := Over.mk 𝓱𝓔To𝓔𝓥
|
||
𝓔Cond := C.1
|
||
𝓥Cond := C.2
|
||
|
||
lemma mk'_self : mk' F.𝓔𝓞.hom F.𝓥𝓞.hom F.𝓱𝓔To𝓔𝓥.hom F.cond_self = F := rfl
|
||
|
||
/-!
|
||
|
||
## Finitness of Feynman diagrams
|
||
|
||
As defined above our Feynman diagrams can have non-finite Types of half-edges etc.
|
||
We define the class of those Feynman diagrams which are `finite` in the appropriate sense.
|
||
In practice, every Feynman diagram considered in the physics literature is `finite`.
|
||
|
||
This finiteness condition will be used to prove certain `Types` are `Fintype`, and prove
|
||
that certain propositions are decidable.
|
||
|
||
-/
|
||
|
||
/-- A set of conditions on a Feynman diagram for it to be considered finite. -/
|
||
class IsFiniteDiagram (F : FeynmanDiagram P) where
|
||
/-- The type of edges is finite. -/
|
||
𝓔Fintype : Fintype F.𝓔
|
||
/-- The type of edges is decidable. -/
|
||
𝓔DecidableEq : DecidableEq F.𝓔
|
||
/-- The type of vertices is finite. -/
|
||
𝓥Fintype : Fintype F.𝓥
|
||
/-- The type of vertices is decidable. -/
|
||
𝓥DecidableEq : DecidableEq F.𝓥
|
||
/-- The type of half-edges is finite. -/
|
||
𝓱𝓔Fintype : Fintype F.𝓱𝓔
|
||
/-- The type of half-edges is decidable. -/
|
||
𝓱𝓔DecidableEq : DecidableEq F.𝓱𝓔
|
||
|
||
instance {𝓔 𝓥 𝓱𝓔 : Type} [h1 : Fintype 𝓔] [h2 : DecidableEq 𝓔]
|
||
[h3 : Fintype 𝓥] [h4 : DecidableEq 𝓥] [h5 : Fintype 𝓱𝓔] [h6 : DecidableEq 𝓱𝓔]
|
||
(𝓔𝓞 : 𝓔 → P.EdgeLabel) (𝓥𝓞 : 𝓥 → P.VertexLabel)
|
||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥) (C : Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :
|
||
IsFiniteDiagram (mk' 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥 C) :=
|
||
⟨h1, h2, h3, h4, h5, h6⟩
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓔 :=
|
||
IsFiniteDiagram.𝓔Fintype
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓔 :=
|
||
IsFiniteDiagram.𝓔DecidableEq
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓥 :=
|
||
IsFiniteDiagram.𝓥Fintype
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓥 :=
|
||
IsFiniteDiagram.𝓥DecidableEq
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : Fintype F.𝓱𝓔 :=
|
||
IsFiniteDiagram.𝓱𝓔Fintype
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] : DecidableEq F.𝓱𝓔 :=
|
||
IsFiniteDiagram.𝓱𝓔DecidableEq
|
||
|
||
instance {F : FeynmanDiagram P} [IsFiniteDiagram F] (i : F.𝓱𝓔) (j : F.𝓔) :
|
||
Decidable (F.𝓱𝓔To𝓔.hom i = j) := IsFiniteDiagram.𝓔DecidableEq (F.𝓱𝓔To𝓔.hom i) j
|
||
|
||
instance fintypeProdHalfEdgeLabel𝓔𝓥 {F : FeynmanDiagram P} [IsFinitePreFeynmanRule P]
|
||
[IsFiniteDiagram F] : DecidableEq (P.HalfEdgeLabel × F.𝓔 × F.𝓥) :=
|
||
instDecidableEqProd
|
||
|
||
/-!
|
||
|
||
## Morphisms of Feynman diagrams
|
||
|
||
We define a morphism between Feynman diagrams, and properties thereof.
|
||
This will be used to define the category of Feynman diagrams.
|
||
|
||
-/
|
||
|
||
/-- Given two maps `F.𝓔 ⟶ G.𝓔` and `F.𝓥 ⟶ G.𝓥` the corresponding map
|
||
`P.HalfEdgeLabel × F.𝓔 × F.𝓥 → P.HalfEdgeLabel × G.𝓔 × G.𝓥`. -/
|
||
@[simps!]
|
||
def edgeVertexMap {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ⟶ G.𝓔) (𝓥 : F.𝓥 ⟶ G.𝓥) :
|
||
P.HalfEdgeLabel × F.𝓔 × F.𝓥 → P.HalfEdgeLabel × G.𝓔 × G.𝓥 :=
|
||
fun x => ⟨x.1, 𝓔 x.2.1, 𝓥 x.2.2⟩
|
||
|
||
/-- Given equivalences `F.𝓔 ≃ G.𝓔` and `F.𝓥 ≃ G.𝓥`, the induced equivalence between
|
||
`P.HalfEdgeLabel × F.𝓔 × F.𝓥` and `P.HalfEdgeLabel × G.𝓔 × G.𝓥 ` -/
|
||
def edgeVertexEquiv {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) :
|
||
P.HalfEdgeLabel × F.𝓔 × F.𝓥 ≃ P.HalfEdgeLabel × G.𝓔 × G.𝓥 where
|
||
toFun := edgeVertexMap 𝓔.toFun 𝓥.toFun
|
||
invFun := edgeVertexMap 𝓔.invFun 𝓥.invFun
|
||
left_inv := by aesop_cat
|
||
right_inv := by aesop_cat
|
||
|
||
/-- The functor of over-categories generated by `edgeVertexMap`. -/
|
||
@[simps!]
|
||
def edgeVertexFunc {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ⟶ G.𝓔) (𝓥 : F.𝓥 ⟶ G.𝓥) :
|
||
Over (P.HalfEdgeLabel × F.𝓔 × F.𝓥) ⥤ Over (P.HalfEdgeLabel × G.𝓔 × G.𝓥) :=
|
||
Over.map <| edgeVertexMap 𝓔 𝓥
|
||
|
||
/-- A morphism of Feynman diagrams. -/
|
||
structure Hom (F G : FeynmanDiagram P) where
|
||
/-- The morphism of edge objects. -/
|
||
𝓔𝓞 : F.𝓔𝓞 ⟶ G.𝓔𝓞
|
||
/-- The morphism of vertex objects. -/
|
||
𝓥𝓞 : F.𝓥𝓞 ⟶ G.𝓥𝓞
|
||
/-- The morphism of half-edge objects. -/
|
||
𝓱𝓔To𝓔𝓥 : (edgeVertexFunc 𝓔𝓞.left 𝓥𝓞.left).obj F.𝓱𝓔To𝓔𝓥 ⟶ G.𝓱𝓔To𝓔𝓥
|
||
|
||
namespace Hom
|
||
variable {F G : FeynmanDiagram P}
|
||
variable (f : Hom F G)
|
||
|
||
/-- The map `F.𝓔 → G.𝓔` induced by a homomorphism of Feynman diagrams. -/
|
||
@[simp]
|
||
def 𝓔 : F.𝓔 → G.𝓔 := f.𝓔𝓞.left
|
||
|
||
/-- The map `F.𝓥 → G.𝓥` induced by a homomorphism of Feynman diagrams. -/
|
||
@[simp]
|
||
def 𝓥 : F.𝓥 → G.𝓥 := f.𝓥𝓞.left
|
||
|
||
/-- The map `F.𝓱𝓔 → G.𝓱𝓔` induced by a homomorphism of Feynman diagrams. -/
|
||
@[simp]
|
||
def 𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔 := f.𝓱𝓔To𝓔𝓥.left
|
||
|
||
/-- The morphism `F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞` induced by a homomorphism of Feynman diagrams. -/
|
||
@[simp]
|
||
def 𝓱𝓔𝓞 : F.𝓱𝓔𝓞 ⟶ G.𝓱𝓔𝓞 := P.toHalfEdge.map f.𝓱𝓔To𝓔𝓥
|
||
|
||
/-- The identity morphism for a Feynman diagram. -/
|
||
def id (F : FeynmanDiagram P) : Hom F F where
|
||
𝓔𝓞 := 𝟙 F.𝓔𝓞
|
||
𝓥𝓞 := 𝟙 F.𝓥𝓞
|
||
𝓱𝓔To𝓔𝓥 := 𝟙 F.𝓱𝓔To𝓔𝓥
|
||
|
||
/-- The composition of two morphisms of Feynman diagrams. -/
|
||
@[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left]
|
||
def comp {F G H : FeynmanDiagram P} (f : Hom F G) (g : Hom G H) : Hom F H where
|
||
𝓔𝓞 := f.𝓔𝓞 ≫ g.𝓔𝓞
|
||
𝓥𝓞 := f.𝓥𝓞 ≫ g.𝓥𝓞
|
||
𝓱𝓔To𝓔𝓥 := (edgeVertexFunc g.𝓔 g.𝓥).map f.𝓱𝓔To𝓔𝓥 ≫ g.𝓱𝓔To𝓔𝓥
|
||
|
||
lemma ext' {F G : FeynmanDiagram P} {f g : Hom F G} (h𝓔 : f.𝓔𝓞 = g.𝓔𝓞)
|
||
(h𝓥 : f.𝓥𝓞 = g.𝓥𝓞) (h𝓱𝓔 : f.𝓱𝓔 = g.𝓱𝓔) : f = g := by
|
||
cases f
|
||
cases g
|
||
subst h𝓔 h𝓥
|
||
simp_all only [mk.injEq, heq_eq_eq, true_and]
|
||
ext a : 2
|
||
simp only [𝓱𝓔] at h𝓱𝓔
|
||
exact congrFun h𝓱𝓔 a
|
||
|
||
lemma ext {F G : FeynmanDiagram P} {f g : Hom F G} (h𝓔 : f.𝓔 = g.𝓔)
|
||
(h𝓥 : f.𝓥 = g.𝓥) (h𝓱𝓔 : f.𝓱𝓔 = g.𝓱𝓔) : f = g :=
|
||
ext' (Over.OverMorphism.ext h𝓔) (Over.OverMorphism.ext h𝓥) h𝓱𝓔
|
||
|
||
/-- The condition on maps of edges, vertices and half-edges for it to be lifted to a
|
||
morphism of Feynman diagrams. -/
|
||
def Cond {F G : FeynmanDiagram P} (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Prop :=
|
||
(∀ x, G.𝓔𝓞.hom (𝓔 x) = F.𝓔𝓞.hom x) ∧
|
||
(∀ x, G.𝓥𝓞.hom (𝓥 x) = F.𝓥𝓞.hom x) ∧
|
||
(∀ x, G.𝓱𝓔To𝓔𝓥.hom (𝓱𝓔 x) = edgeVertexMap 𝓔 𝓥 (F.𝓱𝓔To𝓔𝓥.hom x))
|
||
|
||
lemma cond_satisfied {F G : FeynmanDiagram P} (f : Hom F G) :
|
||
Cond f.𝓔 f.𝓥 f.𝓱𝓔 :=
|
||
⟨fun x => congrFun f.𝓔𝓞.w x, fun x => congrFun f.𝓥𝓞.w x, fun x => congrFun f.𝓱𝓔To𝓔𝓥.w x ⟩
|
||
|
||
lemma cond_symm {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) (𝓱𝓔 : F.𝓱𝓔 ≃ G.𝓱𝓔)
|
||
(h : Cond 𝓔 𝓥 𝓱𝓔) : Cond 𝓔.symm 𝓥.symm 𝓱𝓔.symm := by
|
||
refine ⟨?_, ?_, ?_⟩
|
||
simpa using fun x => (h.1 (𝓔.symm x)).symm
|
||
simpa using fun x => (h.2.1 (𝓥.symm x)).symm
|
||
intro x
|
||
have h1 := h.2.2 (𝓱𝓔.symm x)
|
||
simp at h1
|
||
exact (edgeVertexEquiv 𝓔 𝓥).apply_eq_iff_eq_symm_apply.mp (h1).symm
|
||
|
||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFinitePreFeynmanRule P]
|
||
(𝓔 : F.𝓔 → G.𝓔) : Decidable (∀ x, G.𝓔𝓞.hom (𝓔 x) = F.𝓔𝓞.hom x) :=
|
||
@Fintype.decidableForallFintype _ _ (fun _ => preFeynmanRuleDecEq𝓔 P _ _) _
|
||
|
||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFinitePreFeynmanRule P]
|
||
(𝓥 : F.𝓥 → G.𝓥) : Decidable (∀ x, G.𝓥𝓞.hom (𝓥 x) = F.𝓥𝓞.hom x) :=
|
||
@Fintype.decidableForallFintype _ _ (fun _ => preFeynmanRuleDecEq𝓥 P _ _) _
|
||
|
||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFinitePreFeynmanRule P]
|
||
(𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) :
|
||
Decidable (∀ x, G.𝓱𝓔To𝓔𝓥.hom (𝓱𝓔 x) = edgeVertexMap 𝓔 𝓥 (F.𝓱𝓔To𝓔𝓥.hom x)) :=
|
||
@Fintype.decidableForallFintype _ _ (fun _ => fintypeProdHalfEdgeLabel𝓔𝓥 _ _) _
|
||
|
||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFinitePreFeynmanRule P]
|
||
(𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Decidable (Cond 𝓔 𝓥 𝓱𝓔) :=
|
||
And.decidable
|
||
|
||
/-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/
|
||
@[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left]
|
||
def mk' {F G : FeynmanDiagram P} (𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔)
|
||
(C : Cond 𝓔 𝓥 𝓱𝓔) : Hom F G where
|
||
𝓔𝓞 := Over.homMk 𝓔 $ funext C.1
|
||
𝓥𝓞 := Over.homMk 𝓥 $ funext C.2.1
|
||
𝓱𝓔To𝓔𝓥 := Over.homMk 𝓱𝓔 $ funext C.2.2
|
||
|
||
lemma mk'_self {F G : FeynmanDiagram P} (f : Hom F G) :
|
||
mk' f.𝓔 f.𝓥 f.𝓱𝓔 f.cond_satisfied = f := rfl
|
||
|
||
end Hom
|
||
|
||
/-!
|
||
|
||
## The Category of Feynman diagrams
|
||
|
||
Feynman diagrams, as defined above, form a category.
|
||
We will be able to use this category to define the symmetry factor of a Feynman diagram,
|
||
and the condition on whether a diagram is connected.
|
||
-/
|
||
|
||
/-- Feynman diagrams form a category. -/
|
||
@[simps! id_𝓔𝓞_left id_𝓥𝓞_left id_𝓱𝓔To𝓔𝓥_left comp_𝓔𝓞_left comp_𝓥𝓞_left comp_𝓱𝓔To𝓔𝓥_left]
|
||
instance : Category (FeynmanDiagram P) where
|
||
Hom := Hom
|
||
id := Hom.id
|
||
comp := Hom.comp
|
||
|
||
/-- An isomorphism of Feynman diagrams from isomorphisms of edges, vertices and half-edges. -/
|
||
def mkIso {F G : FeynmanDiagram P} (𝓔 : F.𝓔 ≃ G.𝓔) (𝓥 : F.𝓥 ≃ G.𝓥) (𝓱𝓔 : F.𝓱𝓔 ≃ G.𝓱𝓔)
|
||
(C : Hom.Cond 𝓔 𝓥 𝓱𝓔) : F ≅ G where
|
||
hom := Hom.mk' 𝓔 𝓥 𝓱𝓔 C
|
||
inv := Hom.mk' 𝓔.symm 𝓥.symm 𝓱𝓔.symm (Hom.cond_symm 𝓔 𝓥 𝓱𝓔 C)
|
||
hom_inv_id := by
|
||
apply Hom.ext
|
||
all_goals
|
||
aesop_cat
|
||
inv_hom_id := by
|
||
apply Hom.ext
|
||
all_goals
|
||
aesop_cat
|
||
|
||
/-- The functor from Feynman diagrams to category over edge labels. -/
|
||
def func𝓔𝓞 : FeynmanDiagram P ⥤ Over P.EdgeLabel where
|
||
obj F := F.𝓔𝓞
|
||
map f := f.𝓔𝓞
|
||
|
||
/-- The functor from Feynman diagrams to category over vertex labels. -/
|
||
def func𝓥𝓞 : FeynmanDiagram P ⥤ Over P.VertexLabel where
|
||
obj F := F.𝓥𝓞
|
||
map f := f.𝓥𝓞
|
||
|
||
/-- The functor from Feynman diagrams to category over half-edge labels. -/
|
||
def func𝓱𝓔𝓞 : FeynmanDiagram P ⥤ Over P.HalfEdgeLabel where
|
||
obj F := F.𝓱𝓔𝓞
|
||
map f := f.𝓱𝓔𝓞
|
||
|
||
/-- The functor from Feynman diagrams to `Type` landing on edges. -/
|
||
def func𝓔 : FeynmanDiagram P ⥤ Type where
|
||
obj F := F.𝓔
|
||
map f := f.𝓔
|
||
|
||
/-- The functor from Feynman diagrams to `Type` landing on vertices. -/
|
||
def func𝓥 : FeynmanDiagram P ⥤ Type where
|
||
obj F := F.𝓥
|
||
map f := f.𝓥
|
||
|
||
/-- The functor from Feynman diagrams to `Type` landing on half-edges. -/
|
||
def func𝓱𝓔 : FeynmanDiagram P ⥤ Type where
|
||
obj F := F.𝓱𝓔
|
||
map f := f.𝓱𝓔
|
||
|
||
section symmetryFactor
|
||
/-!
|
||
## Symmetry factors
|
||
|
||
The symmetry factor of a Feynman diagram is the cardinality of the group of automorphisms of that
|
||
diagram.
|
||
|
||
We show that the symmetry factor for a finite Feynman diagram is finite.
|
||
|
||
-/
|
||
|
||
/-- The type of isomorphisms of a Feynman diagram. -/
|
||
def SymmetryType : Type := F ≅ F
|
||
|
||
/-- An equivalence between `SymmetryType` and permutation of edges, vertices and half-edges
|
||
satisfying `Hom.Cond`. -/
|
||
def symmetryTypeEquiv :
|
||
F.SymmetryType ≃ {S : Equiv.Perm F.𝓔 × Equiv.Perm F.𝓥 × Equiv.Perm F.𝓱𝓔 //
|
||
Hom.Cond S.1 S.2.1 S.2.2} where
|
||
toFun f := ⟨⟨(func𝓔.mapIso f).toEquiv, (func𝓥.mapIso f).toEquiv,
|
||
(func𝓱𝓔.mapIso f).toEquiv⟩, f.1.cond_satisfied⟩
|
||
invFun S := mkIso S.1.1 S.1.2.1 S.1.2.2 S.2
|
||
left_inv _ := rfl
|
||
right_inv _ := rfl
|
||
|
||
instance [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] : Fintype F.SymmetryType :=
|
||
Fintype.ofEquiv _ F.symmetryTypeEquiv.symm
|
||
|
||
/-- The symmetry factor can be defined as the cardinal of the symmetry type.
|
||
In general this is not a finite number. -/
|
||
@[simp]
|
||
def cardSymmetryFactor : Cardinal := Cardinal.mk (F.SymmetryType)
|
||
|
||
/-- The symmetry factor of a Finite Feynman diagram, as a natural number. -/
|
||
@[simp]
|
||
def symmetryFactor [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] : ℕ :=
|
||
(Fintype.card F.SymmetryType)
|
||
|
||
@[simp]
|
||
lemma symmetryFactor_eq_cardSymmetryFactor [IsFinitePreFeynmanRule P] [IsFiniteDiagram F] :
|
||
F.symmetryFactor = F.cardSymmetryFactor := by
|
||
simp only [symmetryFactor, cardSymmetryFactor, Cardinal.mk_fintype]
|
||
|
||
end symmetryFactor
|
||
|
||
section connectedness
|
||
/-!
|
||
|
||
## Connectedness
|
||
|
||
Given a Feynman diagram we can create a simple graph based on the obvious adjacency relation.
|
||
A feynman diagram is connected if its simple graph is connected.
|
||
|
||
## TODO
|
||
|
||
- Complete this section.
|
||
|
||
-/
|
||
|
||
/-- A relation on the vertices of Feynman diagrams. The proposition is true if the two
|
||
vertices are not equal and are connected by a single edge. -/
|
||
@[simp]
|
||
def AdjRelation : F.𝓥 → F.𝓥 → Prop := fun x y =>
|
||
x ≠ y ∧
|
||
∃ (a b : F.𝓱𝓔), ((F.𝓱𝓔To𝓔𝓥.hom a).2.1 = (F.𝓱𝓔To𝓔𝓥.hom b).2.1
|
||
∧ (F.𝓱𝓔To𝓔𝓥.hom a).2.2 = x ∧ (F.𝓱𝓔To𝓔𝓥.hom b).2.2 = y)
|
||
|
||
instance [IsFiniteDiagram F] : DecidableRel F.AdjRelation := fun _ _ =>
|
||
@And.decidable _ _ _ $
|
||
@Fintype.decidableExistsFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _ (
|
||
fun _ => @And.decidable _ _ (instDecidableEq𝓔OfIsFiniteDiagram _ _) $
|
||
@And.decidable _ _ (instDecidableEq𝓥OfIsFiniteDiagram _ _)
|
||
(instDecidableEq𝓥OfIsFiniteDiagram _ _)) _ ) _
|
||
|
||
/-- From a Feynman diagram the simple graph showing those vertices which are connected. -/
|
||
def toSimpleGraph : SimpleGraph F.𝓥 where
|
||
Adj := AdjRelation F
|
||
symm := by
|
||
intro x y h
|
||
apply And.intro (Ne.symm h.1)
|
||
obtain ⟨a, b, hab⟩ := h.2
|
||
use b, a
|
||
simp_all only [AdjRelation, ne_eq, and_self]
|
||
loopless := by
|
||
intro x h
|
||
simp at h
|
||
|
||
instance [IsFiniteDiagram F] : DecidableRel F.toSimpleGraph.Adj :=
|
||
instDecidableRel𝓥AdjRelationOfIsFiniteDiagram F
|
||
|
||
instance [IsFiniteDiagram F] :
|
||
Decidable (F.toSimpleGraph.Preconnected ∧ Nonempty F.𝓥) :=
|
||
@And.decidable _ _ _ $ decidable_of_iff _ Finset.univ_nonempty_iff
|
||
|
||
instance [IsFiniteDiagram F] : Decidable F.toSimpleGraph.Connected :=
|
||
decidable_of_iff _ (SimpleGraph.connected_iff F.toSimpleGraph).symm
|
||
|
||
/-- A Feynman diagram is connected if its simple graph is connected. -/
|
||
def Connected : Prop := F.toSimpleGraph.Connected
|
||
|
||
instance [IsFiniteDiagram F] : Decidable (Connected F) :=
|
||
instDecidableConnected𝓥ToSimpleGraphOfIsFiniteDiagram F
|
||
|
||
end connectedness
|
||
|
||
end FeynmanDiagram
|