180 lines
7.4 KiB
Text
180 lines
7.4 KiB
Text
/-
|
||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||
Released under Apache 2.0 license as described in the file LICENSE.
|
||
Authors: Joseph Tooby-Smith
|
||
-/
|
||
import HepLean.SpaceTime.LorentzVector.NormOne
|
||
import HepLean.SpaceTime.LorentzGroup.Proper
|
||
/-!
|
||
# The Orthochronous Lorentz Group
|
||
|
||
We define the give a series of lemmas related to the orthochronous property of lorentz
|
||
matrices.
|
||
|
||
-/
|
||
/-! TODO: Prove topological properties of the Orthochronous Lorentz Group. -/
|
||
|
||
noncomputable section
|
||
|
||
open Matrix
|
||
open Complex
|
||
open ComplexConjugate
|
||
|
||
namespace LorentzGroup
|
||
|
||
variable {d : ℕ}
|
||
variable (Λ : LorentzGroup d)
|
||
open LorentzVector
|
||
open minkowskiMetric
|
||
|
||
/-- A Lorentz transformation is `orthochronous` if its `0 0` element is non-negative. -/
|
||
def IsOrthochronous : Prop := 0 ≤ timeComp Λ
|
||
|
||
lemma IsOrthochronous_iff_futurePointing :
|
||
IsOrthochronous Λ ↔ (toNormOneLorentzVector Λ) ∈ NormOneLorentzVector.FuturePointing d := by
|
||
simp only [IsOrthochronous, timeComp_eq_toNormOneLorentzVector]
|
||
rw [NormOneLorentzVector.FuturePointing.mem_iff_time_nonneg]
|
||
|
||
lemma IsOrthochronous_iff_transpose :
|
||
IsOrthochronous Λ ↔ IsOrthochronous (transpose Λ) := by rfl
|
||
|
||
lemma IsOrthochronous_iff_ge_one :
|
||
IsOrthochronous Λ ↔ 1 ≤ timeComp Λ := by
|
||
rw [IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.mem_iff,
|
||
NormOneLorentzVector.time_pos_iff]
|
||
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue]
|
||
erw [Pi.basisFun_apply, Matrix.mulVec_single_one]
|
||
rfl
|
||
|
||
lemma not_orthochronous_iff_le_neg_one :
|
||
¬ IsOrthochronous Λ ↔ timeComp Λ ≤ -1 := by
|
||
rw [timeComp, IsOrthochronous_iff_futurePointing, NormOneLorentzVector.FuturePointing.not_mem_iff,
|
||
NormOneLorentzVector.time_nonpos_iff]
|
||
simp only [time, toNormOneLorentzVector, timeVec, Fin.isValue]
|
||
erw [Pi.basisFun_apply, Matrix.mulVec_single_one]
|
||
rfl
|
||
|
||
lemma not_orthochronous_iff_le_zero :
|
||
¬ IsOrthochronous Λ ↔ timeComp Λ ≤ 0 := by
|
||
refine Iff.intro (fun h => ?_) (fun h => ?_)
|
||
· rw [not_orthochronous_iff_le_neg_one] at h
|
||
linarith
|
||
· rw [IsOrthochronous_iff_ge_one]
|
||
linarith
|
||
|
||
/-- The continuous map taking a Lorentz transformation to its `0 0` element. -/
|
||
def timeCompCont : C(LorentzGroup d, ℝ) := ⟨fun Λ => timeComp Λ,
|
||
Continuous.matrix_elem (continuous_iff_le_induced.mpr fun _ a => a) (Sum.inl 0) (Sum.inl 0)⟩
|
||
|
||
/-- An auxillary function used in the definition of `orthchroMapReal`. -/
|
||
def stepFunction : ℝ → ℝ := fun t =>
|
||
if t ≤ -1 then -1 else
|
||
if 1 ≤ t then 1 else t
|
||
|
||
lemma stepFunction_continuous : Continuous stepFunction := by
|
||
apply Continuous.if ?_ continuous_const (Continuous.if ?_ continuous_const continuous_id)
|
||
<;> intro a ha
|
||
· rw [@Set.Iic_def, @frontier_Iic, @Set.mem_singleton_iff] at ha
|
||
rw [ha]
|
||
simp [neg_lt_self_iff, zero_lt_one, ↓reduceIte]
|
||
have h1 : ¬ (1 : ℝ) ≤ 0 := by simp
|
||
exact Eq.symm (if_neg h1)
|
||
· rw [Set.Ici_def, @frontier_Ici, @Set.mem_singleton_iff] at ha
|
||
exact id (Eq.symm ha)
|
||
|
||
/-- The continuous map from `lorentzGroup` to `ℝ` wh
|
||
taking Orthochronous elements to `1` and non-orthochronous to `-1`. -/
|
||
def orthchroMapReal : C(LorentzGroup d, ℝ) := ContinuousMap.comp
|
||
⟨stepFunction, stepFunction_continuous⟩ timeCompCont
|
||
|
||
lemma orthchroMapReal_on_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) :
|
||
orthchroMapReal Λ = 1 := by
|
||
rw [IsOrthochronous_iff_ge_one, timeComp] at h
|
||
change stepFunction (Λ.1 _ _) = 1
|
||
rw [stepFunction, if_pos h, if_neg]
|
||
linarith
|
||
|
||
lemma orthchroMapReal_on_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) :
|
||
orthchroMapReal Λ = - 1 := by
|
||
rw [not_orthochronous_iff_le_neg_one] at h
|
||
change stepFunction (timeComp _)= - 1
|
||
rw [stepFunction, if_pos h]
|
||
|
||
lemma orthchroMapReal_minus_one_or_one (Λ : LorentzGroup d) :
|
||
orthchroMapReal Λ = -1 ∨ orthchroMapReal Λ = 1 := by
|
||
by_cases h : IsOrthochronous Λ
|
||
· exact Or.inr $ orthchroMapReal_on_IsOrthochronous h
|
||
· exact Or.inl $ orthchroMapReal_on_not_IsOrthochronous h
|
||
|
||
local notation "ℤ₂" => Multiplicative (ZMod 2)
|
||
|
||
/-- A continuous map from `lorentzGroup` to `ℤ₂` whose kernal are the Orthochronous elements. -/
|
||
def orthchroMap : C(LorentzGroup d, ℤ₂) :=
|
||
ContinuousMap.comp coeForℤ₂ {
|
||
toFun := fun Λ => ⟨orthchroMapReal Λ, orthchroMapReal_minus_one_or_one Λ⟩,
|
||
continuous_toFun := Continuous.subtype_mk (ContinuousMap.continuous orthchroMapReal) _}
|
||
|
||
lemma orthchroMap_IsOrthochronous {Λ : LorentzGroup d} (h : IsOrthochronous Λ) :
|
||
orthchroMap Λ = 1 := by
|
||
simp [orthchroMap, orthchroMapReal_on_IsOrthochronous h]
|
||
|
||
lemma orthchroMap_not_IsOrthochronous {Λ : LorentzGroup d} (h : ¬ IsOrthochronous Λ) :
|
||
orthchroMap Λ = Additive.toMul (1 : ZMod 2) := by
|
||
simp only [orthchroMap, ContinuousMap.comp_apply, ContinuousMap.coe_mk,
|
||
orthchroMapReal_on_not_IsOrthochronous h, coeForℤ₂_apply, Subtype.mk.injEq, Nat.reduceAdd]
|
||
rw [if_neg]
|
||
· rfl
|
||
· linarith
|
||
|
||
lemma mul_othchron_of_othchron_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ)
|
||
(h' : IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_futurePointing] at h h'
|
||
rw [IsOrthochronous, timeComp_mul]
|
||
exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_mem h h'
|
||
|
||
lemma mul_othchron_of_not_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ)
|
||
(h' : ¬ IsOrthochronous Λ') : IsOrthochronous (Λ * Λ') := by
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_futurePointing] at h h'
|
||
rw [IsOrthochronous, timeComp_mul]
|
||
exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_not_mem h h'
|
||
|
||
lemma mul_not_othchron_of_othchron_not_othchron {Λ Λ' : LorentzGroup d} (h : IsOrthochronous Λ)
|
||
(h' : ¬ IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
|
||
rw [not_orthochronous_iff_le_zero, timeComp_mul]
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_futurePointing] at h h'
|
||
exact NormOneLorentzVector.FuturePointing.metric_reflect_mem_not_mem h h'
|
||
|
||
lemma mul_not_othchron_of_not_othchron_othchron {Λ Λ' : LorentzGroup d} (h : ¬ IsOrthochronous Λ)
|
||
(h' : IsOrthochronous Λ') : ¬ IsOrthochronous (Λ * Λ') := by
|
||
rw [not_orthochronous_iff_le_zero, timeComp_mul]
|
||
rw [IsOrthochronous_iff_transpose] at h
|
||
rw [IsOrthochronous_iff_futurePointing] at h h'
|
||
exact NormOneLorentzVector.FuturePointing.metric_reflect_not_mem_mem h h'
|
||
|
||
/-- The homomorphism from `LorentzGroup` to `ℤ₂` whose kernel are the Orthochronous elements. -/
|
||
def orthchroRep : LorentzGroup d →* ℤ₂ where
|
||
toFun := orthchroMap
|
||
map_one' := orthchroMap_IsOrthochronous (by simp [IsOrthochronous])
|
||
map_mul' Λ Λ' := by
|
||
simp only
|
||
by_cases h : IsOrthochronous Λ
|
||
<;> by_cases h' : IsOrthochronous Λ'
|
||
· rw [orthchroMap_IsOrthochronous h, orthchroMap_IsOrthochronous h',
|
||
orthchroMap_IsOrthochronous (mul_othchron_of_othchron_othchron h h')]
|
||
rfl
|
||
· rw [orthchroMap_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
|
||
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_othchron_not_othchron h h')]
|
||
rfl
|
||
· rw [orthchroMap_not_IsOrthochronous h, orthchroMap_IsOrthochronous h',
|
||
orthchroMap_not_IsOrthochronous (mul_not_othchron_of_not_othchron_othchron h h')]
|
||
rfl
|
||
· rw [orthchroMap_not_IsOrthochronous h, orthchroMap_not_IsOrthochronous h',
|
||
orthchroMap_IsOrthochronous (mul_othchron_of_not_othchron_not_othchron h h')]
|
||
rfl
|
||
|
||
end LorentzGroup
|
||
|
||
end
|